A Method to Examine the Effects of Blood Glucose on Human Health by Combining Machine Learning Algorithms
No Thumbnail Available
Date
2022-11
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Department of Electronic and Telecommunication Engineering
Abstract
Diabetes iis ia icommon idisease iand iits iearly isymptoms iare inot ivery inoticeable, iso ian
iefficient imethod iof iprediction iwill ihelp ipatients imake ia iself-diagnosis. iHowever, ithe
iconventional imethod ito iidentify idiabetes iis ito imake ia iblood iglucose itest iby idoctors iand
ithe imedical iresource iis ilimited. iTherefore, imost ipatients icannot iget ithe idiagnosis
iimmediately. iSince ithe iearly isymptoms iof idiabetes iare inot iobvious iand ithe irelationship
ibetween isymptoms iand idiabetes iis icomplex. iThe iprocess iof iMachine iLearning iis ito
itrain ia icomputational ialgorithm ifor iprediction ibased ion ia ibig idataset. iIt iis ipopular ifor iits
iefficiency iand iaccuracy. iAlso, iit ihas ithe iadvantage iof idealing iwith itons iof idata, iso iwe
ican imake idiagnoses ifor iplenty iof ipatients iin ia ishort itime iand ithe iresult iwill ibe imore
iaccurate. iIn ithis istudy, iwe iused iclassical imachine ilearning imodels iKNN, ito imake ia
iprediction imodel ifor idiabetes idiagnosis. iOur idata iwas ifrom iUCI iMachine iLearning
iRepository. iWe iconduct iparameter ituning ion ieach imodel ito itrade-off ibetween ithe
iaccuracy iand icomplexity. iThe iaccuracy iof iKNN iof ithe itest idataset iachieves i81 ipercent,
iwhich iis ithe ibest imodel ifor ipredicting idiabetes.
Description
Prepared By M. Faisal Absar Chowdhury
ID: T-171010