International Islamic University Chittagong Department of Computer Science and Engineering

B. Sc. in CSE Mid Examination, Spring- 2023

Course Code: EEE-1221 Course Title: Electronics

Total marks: 30 Time: 1.5 hours

[Answer all the questions; Figures in the right-hand margin indicate full marks.]

- 1. a) Suppose an electronic device requires the same output polarity for any polarity of the ac 7 co2 A input. Design a rectifier using two diodes to get the required output and derive the efficiency of a full-wave rectifier.
 - b) A full-wave rectifier uses two diodes, the internal resistance of each diode may be assumed 3 constant at 20 Ω . The transformer r.m.s. secondary voltage from center tap to each end of secondary is 50 V and load resistance is 980 Ω . Find
 - (i) Mean load current.
 - (ii) R.m.s. value of load current.
 - (iii) Rectifier efficiency.
- 2. a) Draw the symbol of an N-P-N transistor and briefly explain it's construction and working 6 Principle.

Draw the three transistor configurations – Common Base, Common Emitter, and Common Collector configurations. For a Common Emitter configuration, establish the relation between α and β as given by –

$$\beta = \frac{\alpha}{1 - \alpha}$$

b) For the common base circuit shown in Fig. 2(b), determine I_C and V_{CB}. Assume the 4 CO4 A transistor to be Silicon.

Or

A transistor is connected in Common Emitter configuration in which collector supply is 8 Volts and voltage drop across R_C connected in the collector circuit is 0.5 Volts. The value of $R_C = 800 \ \Omega$. If $\alpha = 0.96$, determine:

- (i) Collector emitter voltage (V_{CE}).
- (ii) Base current (I_B).
- 3. a) Define clamper. Draw and explain the circuits of (i) positive, and (ii) negative clamper 7 cos u with input and output waveforms.

b) Sketch the output waveform for the circuit shown in Fig. 3(b). It is given that the 3 cos A discharging time constant (CR_L) is much greater than the time period of the input wave.

