International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Examination Spring-2018
Course Code: Math-3505
Time: $\mathbf{2}$ hours 30 minutes

Program: B.Sc. Engg. (EEE)
Course Title: Mathematics V
Full Marks: 50

Use separate script for each part. Figures in the right margin indicate full marks.

Part-A

[Answer any two questions from the followings.]
1(a).
Show that the matrix $A=\left(\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right)$ is an Idempotent Matrix.
1(b).
Determine the Rank of the following matrix $A=\left(\begin{array}{ccc}1 & 2 & -3 \\ 1 & 3 & 8 \\ 0 & 0 & -2\end{array}\right)$.
1(c). Define inverse matrix. Find the inverse of the matrix $A=\left(\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right)$ by using row elementary matrix operation.

2(a). If $A=\left(\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2\end{array}\right)$, then find its characteristic equation (Polynomial) and Eigen values (characteristic roots).
2(b). Using Cayley Hamilton theorem, find the A^{-1} of the matrix $A=\left(\begin{array}{ll}5 & 2 \\ 4 & 3\end{array}\right)$. 2
2(c). If a square matrix $A=\left(\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right)$, find the modal matrix P and the resulting diagonal matrix D of A.

3(a). Show that $\mathrm{A}=\left[\begin{array}{ccc}-5 & -8 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & -1\end{array}\right]$ is an involutory matrix.
3(b). Find the solution of the following system of linear equations

$$
x+y+z=3, \quad x+2 y+3 z=4, \quad x+4 y+9 z=6
$$

by using matrix analysis (inverse).
3(c). If $A=\left(\begin{array}{cc}-5 & -2 \\ 4 & 1\end{array}\right)$, then find it's Eigen values and Eigen vectors.

Part - B

[Answer any three questions from the followings.]
4(a). Forces of magnitudes 5 and 3 units acting in the directions $6 \boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k}$ and $3 i-2 j+6 \boldsymbol{k}$, respectively, act on a particle which is displaced from the point $(2,2,-1)$ to $(4,3,1)$. Find the work done by the forces.

4(b). Prove that $a .(b \times c)=b .(c \times a)=c .(a \times b)$
4(c). Prove that $a \times(b \times c)=(a . c) b-(a . b) c$

5(a). Evaluate $\boldsymbol{\nabla} \boldsymbol{\phi}=\log \left(x^{2}+y^{2}+z^{2}\right)$.
5(b). Find the directional derivative of the scalar function $f(x, y, z)=x^{2}+x y+$ 3 z^{2} at the point $A(1,-1,-1)$ in the direction of the line $A B$ where B has coordinates $(3,2,1)$.
5(c). Show that the line integral $\int_{(1,2)}^{(3,4)}\left(x y^{2}+y^{3}\right) d x+\left(x^{2} y+3 x y^{2}\right) d y$ is independent of the joining points $(1,2)$ and $(3,4)$. Hence, evaluate the integral.

6(a). State Stoke's theorem.
6(b). Prove the Green's theorem. 5
6(c). Use the Divergence theorem to evaluate $\iint_{S}(x d y d z+y d z d x+z d x d y)$, where S is the portion of the plane $x+2 y+3 z=6$ which lies in the first octant.

7(a). Find the unit vector normal to surface $\phi\left(x^{2}+3 y^{2}+2 z-6\right)$ at $P(2,0,1)$. 3
7(b). Find the volume of the parallelepiped if $\boldsymbol{a}=-3 \boldsymbol{i}+7 \boldsymbol{j}+5 \boldsymbol{k}, \boldsymbol{b}=-3 \boldsymbol{i}+$ $7 \boldsymbol{J}-3 \boldsymbol{k}$, and $\boldsymbol{c}=7 \boldsymbol{i}-5 \boldsymbol{j}-3 \boldsymbol{k}$ are the three co-terminus edges of the parallelepiped.
7(c). Using Green's theorem, evaluate $\int_{c}\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y$, where C 4 is the square formed by the lines $y= \pm 1, x= \pm 1$.

