International Islamic University Chittagong Department of Electrical and Electronic Engineering

Course	Examination Autumn-2018 Program: B.Sc. Engg. (EEE) c Code: MATH-2309 Course Title: Mathematics-III 2 hours 30 minutes Full Marks: 50	
	Part A [Answer any two questions from the followings; figures in the right margin indicate full marks.]	
1(a).	Find the Characteristic polynomial, Eigen values and Eigen vector for the following matrix $A = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$	03
1(b).	Let $A = \begin{pmatrix} 1 - 3i & 5 + 8i \\ -3 & 3 - 7i \\ -6 - i & 5i \end{pmatrix}$ then find A^{H} .	03
	If $A = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$, then find A^3 and A^{-1} .	04
2(a).	State Cayley Hamilton's theorem. Verify Cayley Hamilton's theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Also find A^{-1}	06
2(b).	$\begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$ Define Eigen value and Eigen vectors. Find the Eigen value and corresponding Eigen vectors of the matrix $A = \begin{pmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 1 \end{pmatrix}$	04
3(a).	What is canonical form of a matrix? Construct the matrix $A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 2 \end{pmatrix}$ to	03
	canonical form and find its rank.	
3(b).	Define diagonalization of matrices. Diagonalize the matrix $A = \begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$	05
3(c).	What is orthogonal matrix? If A is orthogonal matrix then show that A^{-1} is also orthogonal.	02
	Part B [Answer any <u>three</u> questions from the followings; figures in the right margin indicate full marks.]	
4(a).	Find the area of the triangle having vertices at $P(1,3,2)$, $Q(2,-1,1)$ and $R(-1,2,3)$	03
4(b).	If $\vec{A} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $\vec{B} = b_1\hat{i} + b_2\hat{j} + c_3\hat{k}$ and $\vec{C} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$, then Show that	03

	$a_{\mathbf{i}}$	a_2	a_3	and then Prove that			
$\vec{A}.(\vec{B} \times \vec{C}) =$	b_1	b_2	b_3		$\vec{A}.(\vec{B}\times\vec{C})=\vec{B}.(\vec{C}\times\vec{A})$	$\vec{B}.(\vec{C}\times\vec{A})=\vec{C}$	$=\vec{C}.(\vec{A}\times\vec{B})$
	c_1	c_2	c_3				

4(c).	Prove that the law of sine's angle for a plane triangle by using vector.	04
5(a).	Illustrate the physical significance of Gradient, Divergence and Curl. Prove that $\nabla^2(\frac{1}{r}) = 0$	04
5(b).	If $\mathbf{F} = (3xy^2)\mathbf{i} - y^2\mathbf{j}$, evaluate $\int_c \mathbf{F} \cdot d\mathbf{r}$ where C is the curve in the xy plane, $y = 8x^2$, from $(0,0)$ to (1.2)	03
5(c).	A fluid motion is given by $V=(x+y+az)i+(bx+3y-z)j+(3x+cy+z)$ for what value of a,b,c the motion is irrotational?	03
6(a).	State Green's theorem. Verify Green's theorem in $y_c (xy + y^2) dx + x^2 dy$ where C is the closed curve of $y = x$ and $y = 8x^2$.	05
6(b).	Prove that a mates system is orthogonal.	03
6(c).	Apply and a point of the cylinder $x^2 + y = a^2$ bounded by the planes z=0,z=h and where u=ix-jy-kz.	02
7(a). 7(b).	What is solenoidial? Justify the vector $V=(x+3y)i+(y-2z)j+(x-2z)k$ besolenoidial.	03 04
	If $A =$	
7(c).	C. (i) The straight line from $(0,0,0)$ to $(1,0,0)$, monto $(1,1,0)$, and $(1,1,1)$, straight line joining $(0,0,0)$ and $(1,1,1)$.	
/(c).	If $\varphi = 2xyz^2$, $\mathbf{F} = xy\mathbf{i} - z\mathbf{j} + x^2\mathbf{k}$ and C is the curve $\mathbf{x} = t^2$, $\mathbf{y} = 2t$, $\mathbf{z} = t^3$ from $t = 0$ to $t = 1$, evaluating	
	line integrals $\int_c \mathbf{F} \times d\mathbf{r}$	