International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Assessment of Autumn-2020	Program: B.Sc. Engg. (EEE)
Course Code: EEE-3519	Course Title: Power System Analysis
Time: 5 hours (Writing - 4 hours 30 minutes + 30	Full Marks: 50 (Written 30 + Viva/Viva-Quiz-20)
minutes submission time)	

[Answer each of the questions from the followings; Figures in the right margin indicate full marks. Answer script must be submitted through online method within 5 hours from starting time. Also, write down the Q. Set on the front page of your answer script]

Question SET Selection Process:

****Please show the *Calculation of Question SET Selection* at the 1st page of answer sheet. ***

LDI=*x*=*Last digit of student ID*

[For Question SET Selection: (Last digit of Student ID=x)+(the Digit before last digit of Student ID=y)= \mathbf{Z} . If \mathbf{Z} is **even** your Question SET-A and If \mathbf{Z} is **odd** your Question SET-B If the value of $\mathbf{Z}=\mathbf{0}$, answer **Question SET-B**

Example: for St. ID =ET 1510**15**; St. last digit of ID=1=x; and the digit before last digit of ID is =5=y; So, Z=(x+y)=(1+5)=6. Here, 6 is an *even* number. So you have to Answer *Question SET-A*.]

				SET-B				
SL.	Question					Course Outcome	Bloom's Level	Marks
Q.1.	-	_		2 Dower system				
	The line admittance of typical bus system given bellow:							
	Line (bus to bus)			Admittance (pu)				
	1-2			-j3				
	2-3			-j4				
	1-4			-j5				
	4-3			-j6				
	Bus data							
	Bus	P _p pu	Q _è pu	V _o pu	Remarks			
	1 2	0.3	-0.1	_ 1.04 ∠0°	PQ bus Slack bus			
	3	-1.0	0.5	-	PQ bus			
	4	0.5	- 0.2	-	PQ bus			
1(a).	A 4-bus power sys on 50 MVA base a table. Form Ybus a Gauss-Seidal Meth	are indicate and determi	d on the diane V1, V3	agram and bu	is data are given i	in the	Ap	06

2(a).	kVA rating does not change the short circuit current if there is any unsymmetrical fault occurred in transmission line — Justify with example .	CO3	An	03
2(b).	One conductor of a 3-phase line is open. The current flowing to the Δ -connected load through the line "a" is I A. With the current in line "a" as reference and assuming that line "b" is open, find the symmetrical components of the line currents. Draw the circuit arrangement at first. Here, the value of 'I' is 10 times of the summation of last two digits of your roll number.	CO3	Е	03
3(a).	"The symmetrical components do not have separate existence"- Justify the statement with suitable illustration	CO3	Ap	02
3(b).	A synchronous generator and motor rated 100 MVA, 11 kV and both have subtransient reactances of 0.25. The line connecting them has a reactance of 0.15 on the base of the machine ratings. The motor is drawing 'P' MW at 0.75 p.f. leading and a terminal voltage of 9.5 kV when a Symmetrical 3-φ fault occurs at motor terminals. Find the subtransient current in the generator, motor and fault by using internal voltage of machines. Here, the value of 'P' is 10 times of the summation of last two digits of your roll number.	CO3	E	04
4(a).	Construct the sequence network and deduce the expression of current if Line-to-Line-Ground (L-L-G) fault occurs between two phase of a star connected Synchronous Machine.	CO3	E	02
4(b).	A salient pole generator without dampers is rated 50MVA, 12.6kV and has a direct axis subtransient reactance of 0. X p.u. The negative and zero sequence reactance are 0.20 and 0.15 p.u. respectively. The neutral of the generator is solidly grounded. Determine the subtransient current and Line-to-Line-Ground (L-L-G) voltages when line-to-line fault occurs at the terminals of the generator. Assume that the generator is unloaded and operating at rated terminal voltage when the fault occurs. Neglect the resistance. Here, the value of 'X' is 10 times of the summation of last two digits of your roll number.	CO3	Ap	04
5(a).	How power swing equation clarifies the stability of a single or two synchronous machine. Illustrate with related equations and diagram.	CO1	An	03
5(b).	A generator is delivering 70% of maximum power to an infinite bus through a transmission line at supply frequency is 60Hz. A fault occurs such that the reactance between generator and infinite bus is increased to three times its pre fault value. When the fault is cleared, the maximum power that can be delivered is 85% of its original value. Determine the critical clearing angle (δ_{cr}) and critical clearing time (t_{cr}) . Here, the value of 'H' is the summation of last two digits of your roll number.	CO1	E	03
6.	Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in google classroom and other online platform.	CO2	R,U,An	20