International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Assessment of Autumn-2020	Program: B.Sc. Engg. (EEE)
Course Code: EEE-3501	Course Title: Continuous Signals and Linear Systems
Time: 5 hours (Writing - 4 hours 30	Full Marks: 50 [Written-30 + Viva-10 +Quiz-10]
minutes + 30 minutes submission time)	

[Answer each of the questions from the followings; Figures in the right margin indicate full marks. Answer script must be submitted through online method within 5 hours from starting time. Also, write down the Q. Set on the front page of your answer script]

Course Outcomes

S/N	Course Outcomes (COs): Upon the successful completion of the	Corres-ponding	Bloom's
	course, students will be able to	POs	taxonomy
			domain/level
CO-1	Strengthen knowledge of about signal, system, properties of	PO-1	Cognitive/
	signal and system, and representation of system by means of		Understanding
	differential equation.		
CO-2	Learn, analyze, and apply the important mathematical tools such		Cognitive /
	as convolution, Fourier analysis, Laplace transformation for the	PO-2	Applying
	analysis of the signals and systems of circuit applications.		

Q. Set-C

Q2	Analysis of electrical systems with non-sinusoidal periodic excitation and Analysis of Frequency spectrum of signals are two main applications of Fourier Series in electrical engineering. A non-sinusoidal periodic			
	excitation to an electrical system is given below for Fourier Analysis.			
	$f(t) \uparrow$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Here, $A = ID$ last digit + 1, $p = ID$ second last digit + $1 = T/2$.			
	Answer the following questions.			
2(a).	What are the Dirichlet Conditions?	CO2	U	01
2(b).	Formulate the Fourier Series of the given signal.	CO2	C	03
2(c).	Determine the Frequency Spectrum of the given signal.	CO2	E	02
Q3	A system is given below for analysis using Fourier Transform.			
	(ID last digit $+1$) Ω			
	_ +			
	$v_i(t)$ $\stackrel{+}{=}$ $v_o(t)$			
3(a).	What are the steps for the circuit analysis using Fourier Transform?	CO2	R	01
3(b).	Determine the output of the system using Fourier Transform for	CO2	E	03
	$v_i(t) = (ID \ last \ digit + 1)e^{-(ID \ second \ last \ digit + 1)t} \ u(t)$			
3(c).	Among the phasor, Fourier Series, and Fourier Transform, which one will	CO2	E	02
	you select for doing circuit analysis and why? Explain briefly.			
Q4	Laplace transform is an important mathematical tool for signals and			
	systems engineering for doing signals and systems analysis in the frequency domain. Consider the system below and answer the following			
	questions.			
	1 Ω 5 Ω			
	$u(t)$ $=$ $\frac{1}{3}$ F $=$ 1 H $\gtrsim v_o(t)$			
	$u(t)$ $3 \text{ F} + 1 \text{ H } 3 \frac{V_0(t)}{2}$			
4(a).	What are the significances of Laplace Transformation?	CO2	Ap	01
4(b).	Determine the output and transfer function of the system using Laplace transformation.	CO2	E	03
4(c).	Use the Laplace transform to solve the system differential equation	CO2	C	02
	$\frac{d^{2}y(t)}{dt^{2}} + 6\frac{dy(t)}{dt} + 8y(t) = 2u(t)$			
	$\frac{dt^2}{dt^2} + 6 \frac{dt}{dt} + 8y(t) = 2u(t)$			
	$subject\ to\ y(0)=1, y'(0)=-(ID\ last\ digit+1).$			
07				
Q5		1		

Page 2 of 3

5(a).	Define transfer function, poles, zeros, and complex plane. Is the system		R,E	3.5
	in 4(b) stable? Explain with proper reasoning.			
	[Writing just stable or unstable or marginally stable without giving			
	logical explanation will provide you with zero marks.]			
5(b).	Define Amplitude Modulation. If a 2-MHz carrier is modulated by a 4-	CO2	R,E	01
	kHz intelligent signal, determine the frequencies of the three components			
	of the AM signal that results.			
5(c).	What is multiplexing? Explain TDM and FDM with proper diagram.	CO2	R,E	1.5
6.	Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in google	CO2	R	20
	classroom.			