International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Assessment of Autumn-2020	Program: B.Sc. Engg. (EEE)
Course Code: EEE-3501	Course Title: Continuous & Linear System
Time: 5 hours (Writing -4 hours 30	Full Marks: 50 (Written 30 + Viva/Viva-Quiz-20)
minutes + 30 minutes submission time)	

[Answer each of the questions from the followings; Figures in the right margin indicate full marks. Answer script must be submitted through online method within 5 hours from starting time. Also, write down the Q. Set on the front page of your answer script]

3(a).	Fig.4 Evaluate the transfer function for the circuit in Fig.4. Assume the values	CO2	E	02
	of R, L & C of your own choice.			
3(b).	Determine the inverse Fourier transform of		E	02
	$F(\omega) = \frac{1 - j\omega}{\omega^2 - 7j\omega - 10}$			
	$\Gamma(\omega) = \frac{1}{\omega^2 - 7j\omega - 10}$			
3(c).	Explain the importance of Fourier transform.	CO2	E	02
	Vin + 1/10F Vout Fig.5	CO2		
4(a).	Transfer the circuit of Fig.5 from t domain to s domain.		R	02
4(b).	Determine the output voltage $v_0(t)$ of the circuit in Fig.5. Given,		\mathbf{E}	04
	$v_{in}(t)=e^{-t}u(t), R=6\Omega, L=1H, C=\frac{1}{10}F.$			
5(a).	10		E	02
5(b).			R	02
5(c).			E	02
6.	Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in Google classroom.		R	20