International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Assessment Test Autumn2020

Course Code: EEE-2415

Time: 5 hours (Writing 4 hours 30
minutes $+\mathbf{3 0}$ minutes submission time)

Program: B.Sc. Engg. (EEE)

Course Title: Transmission and Distribution of Electrical Power System
Full Marks: 50 (Written 30 + Viva/Viva-Quiz-20)
[Answer each of the questions (1-5) from the followings; Figures in the right margin indicate full marks.]

SET-A

1(a). Evaluate the power factor and design a sending end power circle diagram with pointing all the parameters considering XY and MN as the real power and the reactive power. X and Y are the last two digits of your student ID (If $\mathrm{X}=\mathrm{Y}=0$, then choose $\mathrm{X}=1$), M and N are the first two digits of your student ID. Choose the difference of 100 and XY as the radius.
1(b). Summarize the importance of power circle diagram in power system.

2(a). Compare between the on-load and off-load tap changing transformer. Conclude your opinion about the superiority between the two transformers.
2(b). A loop of XY MW at a p.f. of $0 . \mathrm{N}$ lagging is supplied by a 3-phase line whose voltage has to be maintained at PQ kV at each end. If line resistance and reactance per phase are N ohm and 1 M ohm respectively, calculate the capacity of synchronous condenser to be installed for the purpose. $\mathrm{M}, \mathrm{N}, \mathrm{P}, \mathrm{Q}, \mathrm{X}$ and Y are the continuous sequence of your six digits student ID (If $X=Y=0$, then choose $\mathrm{X}=1$).

3(a). Choose $(\mathrm{X}+1) \mathrm{cm}$ as the core diameter, $(3 \mathrm{X}+1) \mathrm{cm}$ as the internal sheath diameter, and 2 X kV as the potential difference between conductor and sheath, deduce the expression for potential gradient in a single-core cable. X and Y are the last two digits of your student ID (If $X=Y=0$, then choose $X=1$).
3(b). In a Murray loop test for ground fault on 5XYm of cable having a resistance of $\mathrm{X} . \mathrm{Y} \Omega / \mathrm{km}$, the faulty cable is looped with a sound cable of same length and area of cross-section. If the ratio of other two arms of the testing network at balance is $3: 1$, evaluate the distance of the fault from the testing end of cables X and Y are the last two digits of your student ID (If $\mathrm{X}=\mathrm{Y}=0$, then choose $\mathrm{X}=1$).

4(a). In a 3 X kV overhead line there are 2 units in the string of insulators. If the capacitance between each insulator pin and earth is MX\% of self-capacitance of each insulator, find (i) the distribution of voltage over 3 insulators and (ii) string efficiency. Here, M is the first digit and X is the $2^{\text {nd }}$ last digit of your student

ID.
4(b). Draw a typical pin type insulator, and show the flashover and CO3 Ap, puncture in the figure.

5(a). Two tram cars $(\mathrm{A} \& \mathrm{~B})(\mathrm{X}+1) \mathrm{km}$ and $(3 \mathrm{X}+1) \mathrm{km}$ away from a $\mathbf{C O 1} \quad \mathbf{E}$ sub-station return XYA and $(1 / 2) \mathrm{XY}$ A respectively to the rails. The sub-station voltage is 6 PQ Vdc . The resistance of trolley wire is $0.2 \mathrm{M} \Omega / \mathrm{km}$ and that of track is $0.02 \mathrm{~N} \Omega / \mathrm{km}$. Calculate voltage across each tram car. $\mathrm{M}, \mathrm{N}, \mathrm{P}, \mathrm{Q}, \mathrm{X}$ and Y are the continuous sequence of your six digits student ID (If $X=Y=0$, then choose $\mathrm{X}=1$).
5(b). Discuss the steps of developing a phasor diagram to find the sending end voltage considering the power factor referred to receiving end voltage while solving the A.C. distribution problems.
6. Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in google classroom.

CO1,	U,	20
CO2,	An,	
CO3	Ap	

