International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Assessment Test Autumn-2020	Program: B.Sc. Engg. (EEE)
Course Code: EEE-2407	Course Title: Digital Electronics
Time: 5 hours (Writing - 4 hours 30	Full Marks: 50 (Written 30 + Viva/Viva-Quiz- 20)
minutes + 30 minutes submission	
time)	

[Ans	swer each of the questions (1-5) from the followings; Figures in the right full marks.] SET-B	nt margin	indica	ate
1(a)	CO3	C	03	
1 (b)	otherwise. Explain the procedure to reduce the carry propagation delay in 4 bit binary parallel adder.	CO3	E	03
2(a).	Implement the Function $F(A,B,C) = ABC'+A'BC'+ABC+AB'C'$ using a 3×8 decoder.	CO3	Ap	02
2(b).	CO3	Ap	02	
2 (c)	Design Decimal to BCD encoder circuit.	CO3	C	02
3(a).	Design a sequential circuit using J-K flip flop. The state diagram is given in Fig.1.	CO2	R	04
3(b).	Find the reduced state table and draw the reduced state diagram by reducing the number of states in Table1.	CO2	K	02

	Table1-State table									
		Present	Next State Output							
		State	x=0	x=1	x=0	x=1				
		a	d	а	0	0				
		b	е	а	0	0]			
		С	g	f	0	1				
		d	а	d	1	0				
		е	а	d	1	0				
		f	С	b	0	0]			
		g	а	е	1	0				
4(a)	Design a synchronous counter using T Flip-flop whose state diagram							CO3	C	03
	is shown in Fig.2.									
	(000)									
	111 011									
			1		\mathcal{T}					
	100									
	101									
	Fig.2									
4(b).						CO3	C	02		
4(c).						CO3	An	01		
5(a).					register to	CO3	C	03		
= ()	store the data 11100 & 10100.					GC 2	~	0.2		
5(b).						CO3	C	03		
6.	Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in							20		
	Google classroom.									