International Islamic University Chittagong Department of Electrical and Electronic Engineering

Final Assessment of Autumn-2020
Course Code: EEE-2407
Time: 5 hours (Writing- 4 hours 30 minutes + 30 minutes submission time)

Program: B.Sc. Engg. (EEE)
Course Title: Digital Electronics
Full Marks: 50 (Written 30 + Viva/Viva-Quiz-20)
[Answer each of the questions from the followings; Figures in the right margin indicate full marks. Answer script must be submitted through online method within $\mathbf{5}$ hours from starting time.]

1(a). Draw the logic diagram of a look-ahead carry generator for a 3-bit CO4 C 02 full adder.
1(b). Design a 3-bit Encoder and find its truth table. How can you CO3 U 02 transform an Encoder into a Multiplexer?
1(c). Design the following function with a 5×32 decoder IC: $\mathbf{C O 4} \mathbf{A p} 02$ $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\sum(\mathrm{X}, \mathrm{Y}, 12,15,19,24,27,30,31)$
[Take X and Y from last two digit of your ID, e.g. ET1830XY. If $\mathrm{X}=\mathrm{Y}$, take only one]

2(a). Implement the following boolean function with multiplexer:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(\mathrm{X}, \mathrm{Y}, 6,7,9,11,14,15)$, take C as input line.
[Take X and Y from last two digit of your ID, e.g. ET1830XY. If $\mathrm{X}=\mathrm{Y}$, take only one]
2(b). Construct a BCD to Excess-3 code converter using:
CO4 C 02
i) Binary parallel adder IC
ii) Decoder

2(c). Draw the logic diagram of all basic flip-flops using only NAND CO3 C 01 gates.

3(a). Design the logic diagram of the sequential circuit that corresponds CO5 C 04 with the following state table

Present state				Input	Next state		Output	
A	B	C	x	A	B	C		y
0	0	0	0	0	0	1	0	
0	0	0	1	1	1	1	1	
0	0	1	0	1	1	0	0	
0	0	1	1	1	1	1	0	
0	1	1	0	0	0	0	0	
0	1	1	1	0	1	1	1	
1	1	0	0	0	0	0	1	
1	1	0	1	0	1	1	0	
1	1	1	0	1	1	0	0	
1	1	1	1	0	0	1	1	

3(b). Derive the state table from the following state diagram.
CO5 An 02

4(a). Construct a 3-bit parallel in-serial out shift register. Explain how it CO5 C 03 works.
4(b). Assume you need to store 16-bit of data in a register. How many CO5 An 01 clock pulse you will need to load the data and to read the date if the register is a:
(i) Serial in-serial out register
(ii) Serial in-parallel out register
(iii) Parallel in-serial out register
(iv) Parallel in-parallel out register

4(c). Draw the sequence table of a 7-bit Ring counter and its logic CO5 C 02 diagram. Explain how this counter works.

5(a). Design a 7-bit Asynchronous up counter that can count from 0-XY, CO5 C 03 where X and Y are last two digits of your ID, e.g. ET1830XY.
5(b). Design a synchronous BCD counter.
CO5 An 02
5(c). What is MOD number? How to find the frequency of the output CO3 R 01 signal of the last flip-flop for an asynchronous counter?
6. Viva/Viva-Quiz: The time of viva/viva-quiz will be declared in google classroom.

Shafait Ahmed
Asst. Prof.

