
i

BACHELOR OF SCIENCE IN ELECTRONIC AND TELECOMMUNICATION

ENGINEERING

Utilizing Deep Learning Algorithms to Analyze and Detect Tomato

Features in Horticulture.

Submitted To

Shahin Ahmed Bappy

 T191050

Supervised By

Engr. Syed Zahidur Rashid

Assistant Professor

Dept. of ETE,IIUC

Department of Electronic and Telecommunication Engineering(ETE)

International Islamic University Chittagong

Kumira, Sitakunda, Chattogram-4318, Bangladesh.

February 2024

ii

DECLARATION OF CANDIDATE

The work in this thesis, except for properly cited quotations and summaries, is my own,

I hereby declare.

12 March 2024

(Signature of Candidate)

Shahin Ahmed Bappy

ID:T191050

Program: BSc. In ETE

Academic Year: Spring 2019

iii

CERTIFICATE OF APPROVAL

The thesis " Utilizing Deep Learning Algorithms to Analyze and Detect Tomato

Features in Horticulture" was submitted by Shahin Ahmed Bappy bearing Matric ID

T191050 to the Department of Electronic & Telecommunication Engineering. I hereby

state that after reading this thesis, I believe it to be of sufficient quality and scope to be

awarded the degree of BSc. in Electronic & Telecommunication Engineering.

12 March 2024

Supervisor

Engr. Syed Zahidur Rashid

Assistant Professor & Chairman

Dept of ETE,IIUC

iv

ACKNOWLEDGEMENT

I extend my sincere gratitude to Almighty Allah for granting me the fortitude and ability

to successfully complete this thesis.

My heartfelt appreciation is reserved for my supervisor, Syed Zahidur Rashid, Assistant

Professor in the Department of Electronic and Telecommunication Engineering at the

International Islamic University Chittagong (IIUC). His unwavering support and

guidance played an instrumental role at various stages of this academic endeavor. In

moments of challenges, Professor Rashid provided invaluable assistance, ensuring the

successful culmination of this thesis. I also express my gratitude to all those who offered

guidance throughout this journey, aiding whenever needed. Their insightful comments

and suggestions significantly contributed to the refinement of my work. My gratitude

extends to everyone who played a role, no matter how small, in making this

achievement possible.

I am truly thankful for the collective effort and support that has shaped the successful

completion of this thesis.

v

ABSTRACT

Tomatoes fruits, a pivotal constituent of tomato plants, with a primary emphasis on

elucidating the mechanisms governing their quality formation during the ripening

process. Against the backdrop of heightened interest in the tomato industry, the research

endeavours to augment the efficacy and success of automatic detection under

greenhouse tomato conditions, a pivotal facet for the progression of contemporary

agricultural practices. The paper introduces a ground-breaking method using

convolutional neural networks to accurately classify tomato fruits based on their

ripeness and overall condition. The study adopts a modified ResNet50V2 architecture

as the underpinning framework for the CNN model, renowned for its effectiveness in

image classification tasks. The outcomes demonstrate a commendable 95.36% accuracy

in categorizing tomato fruits into four distinct classes: unripe, ripe, old, and damaged.

vi

TABLE OF CONTENT

CHAPTER 1 INTRODUCTION

1.1 Introduction 1

1.2 Deep Learning 2

1.3 Convolution Neural Network 3

1.4 Pre-trained Models 4

1.5 Residual Network 4

1.5.1 Frozen Layer 5

1.5.2 Flatten Layer 5

1.5.3 Dense Layer 6

1.5.4 Rectified Linear Unit 6

1.5.5 Dropout Layer 7

1.5.6 Output Layer 7

1.5.7 Fine Tuning Model 7

1.6 Research Background 8

1.7 Problem Statement 8

1.8 Motivation 9

1.9 Objective of Research 9

1.10 Organization of the Thesis 10

CHAPTER 2 LITERATUR REVIEW

2.1 Introduction 11

Page

DECLARATION ii

SUPERVISOR’S DECLARATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

TABLE OF CONTENT vi

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

vii

2.2 Scope of Research 11

2.3 Literature Review 11

2.4 Summary 25

CHAPTER 3 METHODOLGY

3.1 Introduction 26

3.2 Methodology 26

3.3 Research activity 27

3.3.1 Dataset Generation 28

3.3.2 Data Pre-Processing 29

3.3.3 Data Augmentation 30

3.3.4 Modified Resnet50V2 Architecture 31

3.3.5 Model Training 39

3.3.6 Model Testing 40

3.4 Summary 41

3.5 Methodology (For Testing) 42

3.5.1 Initial Data Gathering 43

3.5.2 Data Preparation 43

3.5.3 Creation of Testing Set 43

3.5.4 Model Evaluation 43

3.5.5 Analysis of Expected Results 43

CHAPTER 4 RESULT AND DESCUSION

4.1 Introduction 44

4.2 Programming language and necessary

dependencies

 44

4.3 Experimental Analysis 45

4.3.1 Performance Analysis of Adam optimizer 47

4.3.2 Performance Analysis of Adamax optimizer 49

4.4 Experimental Analysis Existing Model in our

Dataset

 50

4.4.1 Performance Analysis of Adam optimizer 52

4.4.2 Performance Analysis of Adam optimizer 53

viii

4.4.3 Performance Analysis of Adamax optimizer 55

4.5 Predicted Sample 56

4.6 Result Analysis of Existing Model 58

4.7 Comparison Adam with existing work 60

4.8 Discussions 60

4.9 Summary 60

4.10 Performance Analysis of Adam optimizer in our

model

 61

4.11 Result Analysis of model 61

4.12 Predicted Sample 62

4.13 Primary Data Outcomes 63

CHAPTER 5 CONCLUSION AND FUTURE WORKS

5.1 Conclusion 64

5.2 Contribution of this thesis 64

5.3 Future works 65

REFERENCES 66

APPENDIX

 77

ix

LIST OF TABLES

Table No.

 Page

Table 2.1 Key findings of the previous literatures 15

Table 4.1 Our model parameter value and hyper parameter 46

Table 4.2 Existing optimizer parameter value and hyper parameter 50

Table 4.3 Comparison table of Above Optimizers in our model 59

Table 4.4 Comparison table of Above Optimizers in our model 59

Table 4.5 Comparison Table of Above One Optimizers In Our

Model

 61

x

LIST OF FIGURES

Figure No. Page

Figure 3.1 Work Flow Diagram of our Research 27

Figure 3.2 Flow chart of proposed CNN model 28

Figure 3.3 Example of Tomatoes Dataset 29

Figure 3.4 Splinted Data of Tomatoes Dataset 30

Figure 3.5 Sample Images in Tomatoes Dataset 30

Figure 3.6 Augmented Image in Tomatoes Dataset 31

Figure 3.7 Frozen Layer of ResNet50V2 Architecture 34

Figure 3.8 Modified ResNet50V2 Architecture 35

Figure 3.9 Modified ResNet50V2 Architecture 38

Figure 3.10 Modified ResNet50V2 Model Summary 40

Figure 3.10 Working Flowchart for Testing 42

Figure 4.1 Accuracy and loss curve in Adam Optimizer in 25

epoch

 47

Figure 4.2 Confusion matrix of Adam Optimizer for our model 48

Figure 4.3 Classification Matrix of Adam Optimizer for our

model

 48

Figure 4.4 Accuracy and Loss curve in Adamax Optimizer in

25 epoch

 49

Figure 4.5 Confusion Matrix of Adamax Optimizer for our

model

 49

Figure 4.6 Classification report of Adamax Optimizer for our

model

 50

Figure 4.7 Accuracy and loss curve in Adam Optimizer for

existing model

 52

Figure 4.8 Confusion Matrix of Adam Optimizer for existing

model

 52

Figure 4.9 Classification report of Adam Optimizer for existing

model

 53

Figure 4.10 Accuracy and loss curve of Adam optimizer for

existing model with 0.001 learning rate

 53

xi

Figure 4.11 Confusion Matrix of Adam Optimizer for existing

model with 0.001 learning rate

 54

Figure 4.12 Classification Report of Adam Optimizer for

existing model with 0.001 learning rate

 54

Figure 4.13 Accuracy and loss curve of Adamax optimizer for

existing model with 0.001 learning rate

 55

Figure 4.14 Confusion Matrix of Adamax Optimizer for existing

model with 0.001 learning rate

 55

Figure 4.15 Classification Report of Adamax Optimizer for

existing model with 0.001 learning rate

 56

Figure 4.16 Predicted outcomes for Damaged Class 57

Figure 4.17 Predicted outcomes for Old Class 57

Figure 4.18 Predicted outcomes for Ripe Class 58

Figure 4.19 Predicted outcomes for Unripe Class 58

Figure 4.20 Comparison of validation accuracies of 3 Adam

optimizers with our mode & their proposed CNN

model.

 60

Figure 4.21 Accuracy and Loss curve in Adam Optimizer in 25

epoch

 61

Figure 4.22 Confusion matrix of Adam Optimizer for our model 61

Figure 4.23 Present a visual representation demonstrating the

examination of predicted tomato images.

 62

xii

LIST OF ABBREVIATIONS

CNN Convolution Neural Network

ADAM Adaptive Moment Estimation

ADAMAX Adaptive moment estimation with Maximum

ReLU Rectified Linear Unit

RMSProp Root Mean Square Propagation

ResNet Residual Network

1

CHAPTER 1

 Introduction

1.1 Introduction

An inventive approach to tomato fruit quality detection is being explored through

machine learning or computer vision technology, which is capable of accurately

assessing the ripeness and quality of fruits based on various factors such as fresh

appearance, color, size, and texture. A tomato is a fruit that is ready to be picked after

it reaches commercial maturity. Tomato, commonly used in various culinary dishes, is

known for its rich flavor and nutritional value and is a staple ingredient in many cuisines

around the world. Its vibrant red color and juicy texture make it visually appealing,

while its high levels of vitamins and antioxidants contribute to its nutritional value. The

use of machine learning and computer vision in tomato fruit quality detection can

revolutionize the agricultural industry by providing efficient and accurate methods for

assessing the freshness and quality of tomatoes, ensuring that only the best produce

reaches consumers' plates. Since tomatoes are cultivated in a variety of temperatures

and locales, it might be difficult to identify and locate them. To guarantee that only ripe

and healthy tomatoes are harvested, hence enhancing the overall quality of the crop, it

is crucial to precisely identify and localize tomatoes in images. Tomato localization and

identification may be made more efficient and less prone to human error by automating

the procedure. This may be accomplished by using Computer vision technology, as it

can evaluate fruit imagery and classify them according to factors such freshness and

quality.

In the realm of agriculture, the integration of deep learning technologies is steering a

transformative era, with convolutional neural networks (CNN) leading the charge

[1].These advanced technologies are not only revolutionizing the detection of tomato

leaf diseases but also hold immense promise for the broader field of crop identification.

In particular, plant factories, emblematic of vertical agriculture, have emerged as

groundbreaking solutions for sustainable crop production, ensuring a consistent year-

round supply of vegetables, with tomatoes taking center stage.

However, the dense foliage characteristic of tomato plants presents a significant

challenge to detection accuracy, particularly for small-target varieties. Recent

2

initiatives have showcased the versatility and efficacy of diverse CNN architectures,

including AlexNet, GoogLeNet, VGGNet, and ResNet, in addressing this challenge.

Researchers have leveraged these architectures to undertake tasks ranging from the

creation of candidate structures to precise bounding box positioning through regression,

specifically in the identification of tomato leaf diseases [2].

Recent strides in fruit identification have unveiled the considerable potential of CNNs.

Pioneering initiatives have deployed rapid R-CNN and modified YOLOV3 for the

detection of ripe and diseased tomatoes, offering glimpses into the future of automated

crop monitoring [3]. Despite these advancements, the broader challenge of enhancing

the accuracy of overall crop detection persists, necessitating the development of

advanced CNN techniques tailored for agriculture [4]. A recent breakthrough involves

the integration of semantic segmentation algorithms, promising to elevate the precision

of identifying distinct crop parts.

In parallel, current detection models, often reliant on intricate and heavyweight

architectures, not only impede accurate identification but also hinder the deployment of

robots for essential operations within plant factories, thereby escalating manufacturing

costs. Recognizing the imperative to overcome these limitations, a dedicated project is

underway, seeking to propel tomato fruit detection to new heights by employing

sophisticated CNN techniques[5]. The objective is clear: to enhance the efficiency and

feasibility of automated agricultural operations within plant factories, heralding a new

era of precision and sustainability in farming practices[6].

1.2 Deep Learning

Deep learning is a type of machine learning that uses neural networks with numerous

layers (deep neural networks) to learn and represent complicated patterns in data. The

term "deep" refers to the depth of the neural network, which is made up of

interconnected layers of nodes, each of which learns and extracts hierarchical aspects

from the input data[7]. Deep learning has demonstrated exceptional performance in

domains like as picture and speech recognition, natural language processing, and

decision-making [8].Artificial neural networks were first introduced in the 1940s,

which is when deep learning first emerged. But deep learning didn't become popular

3

until the 2000s and 2010s, when enormous datasets became available, computational

power increased, and creative techniques were employed[9].

Artificial intelligence is dominated by deep learning, which is driving advances in a

number of industries, including finance, healthcare, agriculture and autonomous

systems[10]. Deep learning's continual influence on the creation of intelligent systems

is a result of its ongoing investigation and improvement [11].

1.3 Convolution Neural Network

Convolutional neural networks (CNNs) are a kind of deep neural network that are

particularly useful for tasks like computer vision and image recognition since they are

built for processing and evaluating visual data. Convolutional layers are a tool used by

CNNs to extract complex features and patterns automatically and hierarchically from

input images [12].

CNN is extremely valuable since it reduces human work by automatically detecting the

features. For example, for apples and mangoes, it would automatically detect the

various characteristics of each class on its own[13]. CNNs are a type of Deep Neural

Network that can recognize and classify specific aspects in images and are commonly

used to analyze visual images. Their applications include image and video recognition,

classification, medical image analysis, computer vision, and natural language

processing. CNN has great accuracy, which makes it ideal for picture recognition[14].

The name "Convolution" in CNN refers to the mathematical function of convolution,

which is a special type of linear operation in which two functions are multiplied to form

a third function that expresses how the shape of one function is altered by the other.

Simply put, two images that can be represented as matrices are multiplied to provide an

output that is then used to extract features from the image [15].

CNNs originated in the 1980s and 1990s, when Yann LeCun and others made

substantial contributions to the creation of convolutional neural network designs.It

wasn't until the 2010s that CNNs became widely recognized and adopted. In 2012, Alex

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton created the AlexNet, a deep CNN that

won the ImageNet Large Scale Visual Recognition Challenge.Subsequent advances

included GoogLeNet (2014) and ResNet (2015), which added innovative architectural

aspects such as inception modules and residual connections, respectively, to improve

4

CNN efficiency and accuracy[16]. CNNs are the core of computer vision applications,

enabling advances in facial recognition, object detection, medical picture analysis, and

other area [17] . The ongoing evolution of CNN architectures and techniques continues

to drive progress in the field of deep learning and visual data processing.

1.4 Pre-trained Models

A pre-trained model is one that has learnt parameters (weights and biases) on a big

dataset for a particular job, like natural language processing or image classification, and

that model has been saved after training. Large datasets, like Wikipedia for language

modeling or ImageNet for image classification, are frequently used to train these pre-

trained models. Pre-trained models are frequently employed in transfer learning, which

involves adapting and transferring training data from one task to another that is related

but different. Researchers and practitioners can use the learned representations to

improve performance on the target task by initializing a new model using pre-trained

weights[18].Pre-trained models are frequently used for natural language processing

tasks like BERT, GPT, and Transformer as well as picture classification tasks like

VGG, ResNet, and Inception. These pre-trained models have demonstrated state-of-

the-art performance on a range of tasks when appropriately altered or changed, and they

have been widely adopted across different domains[19].

Pre-trained models have the main benefit of being able to extract broad features and

patterns from the training set, which may subsequently be adjusted or applied to

different tasks using smaller datasets. When dealing with sparse data, this method can

drastically cut down on the amount of computational power and time needed to train a

model from start[20].

1.5 Residual Network

A particular kind of deep neural network architecture called ResNet, or Residual

Network, was created to solve the difficulties involved in training extremely deep

networks. When ResNet was first presented by Kaiming He et al. in 2015, it

revolutionized the deep learning space[21].The usage of residual blocks, which include

skip or shortcut connections, is the primary innovation in ResNet. By allowing the

network to bypass one or more layers during training, these links help gradients move

more easily throughout the network. This aids in reducing the vanishing gradient issue,

5

which can impede training in very deep networks [22].ResNet-50 is a 50-layer

convolutional neural network (48 convolutional layers, one MaxPool layer, and one

average pool layer). 10]ResNet-50v2 is a variation of the ResNet (Residual Network)

architecture, which is a deep convolutional neural network (CNN). ResNet was

developed to solve the problem of training very deep neural networks by leveraging

residual or skip connections[23]. The "50" in ResNet-50v2 stands for the network's

depth, indicating that it includes 50 layers. The "v2" indicates that it is an upgraded or

better version that incorporates improvements over the ResNet-50 architecture in its

initial form. Similar to its forerunners, ResNet-50v2 is extensively employed for a range

of computer vision applications, such as feature extraction, object identification, and

image classification [24]. The architecture is well-liked in the deep learning community

because of how well it handles deep networks and how well it can capture intricate

hierarchical characteristics. As we discussed in the context of changing ResNet-50V2

for tomato detection in a prior session, it is normal practice when working with ResNet-

50v2 or any other deep neural network to fine-tune or modify the architecture based on

the specific requirements of the task at hand [25].

1.5.1 Frozen Layer

A frozen layer in neural networks refers to a layer whose weights and biases are not

updated during training. This means that the frozen layer's parameters remain constant

throughout training, effectively "freezing" them [26]. The notion of freezing layers is

widely employed in transfer learning and fine-tuning scenarios, in which pre-trained

models are applied to new tasks or domains. In such circumstances, the network's early

layers, which often capture low-level data such as edges or textures, may already be

well-suited to the new task and can be frozen to minimize overfitting while retaining

previously learned knowledge[27]. Overall, freezing layers is a useful strategy in neural

network training since it enables practitioners to use pre-trained models efficiently and

effectively for new tasks while avoiding wasteful retraining of previously learnt

features. This technique is often used in transfer learning, where the base model(trained

on some other dataset)is frozen.

1.5.2 Fatten Layer

A flatten layer is a sort of layer that is often employed in deep learning neural networks,

6

notably convolutional neural networks (CNNs). Its principal role is to convert

multidimensional array data into one-dimensional arrays or vectors.

In convolutional neural networks, prior layers usually execute operations such as

convolution and pooling, which produce multidimensional outputs or feature maps.

However, when feeding data into fully connected layers (also known as dense layers)

for tasks such as classification or regression, the input is typically one dimension. Here's

where the flatten layer comes in[28].The flatten layer essentially reshapes the previous

layers' multidimensional output into a flat vector by collapsing all dimensions save the

first (batch dimension) into one. This transformation preserves the spatial relationships

acquired by the previous layers while preparing the input for further processing by the

fully connected layers.For example, if the output of the previous layers is a 3D tensor

with dimensions (batch_size, height, width, depth), the flatten layer will convert it to a

1D tensor with dimensions (batch_size, height * width * depth)[29].In summary, the

flatten layer acts as an intermediary stage in neural network architecture, turning

multidimensional feature maps into a format that can be processed further by fully

connected layers, allowing for tasks such as classification and regression.

1.5.3 Dense Layer

A dense layer, also known as a fully linked layer, is a crucial component of artificial

neural networks. It is made up of numerous neurons or units organized in a single layer,

with each neuron linked to every neuron in the previous layer[30]. In a dense layer,

each neuron receives input from all neurons in the previous layer and generates an

output that contributes to the inputs of neurons in the next layer.

1.5.4 Rectified Linear Unit

The ReLU (Rectified Linear Unit) activation function is a common nonlinear activation

function in neural networks. It adds non-linearity to the model by setting all negative

values in the input to zero while keeping positive values constant[31].

Graphically, the ReLU function resembles a linear function with the negative portion

of the input values clipped to zero. It is computationally efficient and helps to solve the

vanishing gradient problem, making it a popular choice for deep learning models.

ReLU activation is especially useful in convolutional neural networks (CNNs) and deep

neural networks (DNNs), where it improves the learning of complicated representations

7

and allows for faster convergence during training than classic activation functions such

as sigmoid or tanh[32].

1.5.5 Dropout Layer

A dropout layer is a regularization technique used in neural networks to avoid

overfitting. Overfitting happens when a model learns to memorize training data too

well, resulting in noise or irrelevant patterns that do not adapt well to new data.

Overall, dropout layers are an effective strategy for boosting neural networks'

generalization performance by decreasing overfitting and encouraging the development

of more robust features [33].They are widely employed in a variety of neural network

topologies, such as fully connected networks, convolutional neural networks (CNNs),

and recurrent neural networks.

1.5.6 Output Layer

The output layer compares the network's predictions to the ground truth labels and

calculates the loss function to determine the difference between expected and actual

values [34].This loss is then utilized to adjust the network's parameters, such as weights

and biases, via backpropagation and gradient descent optimization. For multiclass

classification problems, neural networks typically use an output layer with a softmax

activation function. SoftMax turns the raw output scores of each neuron in the output

layer into probabilities that accumulate to one, allowing the network's predictions to be

interpreted as class probabilities [35]. The output layer with SoftMax activation allows

neural networks to yield class probabilities for multiclass classification problems,

making it easier to evaluate the model's results.

1.5.7 Fine Tuning Model

Fine-tuning a model is the act of modifying a pre-trained neural network's parameters

(often the weights of specific layers) to adapt it to a new job or dataset [36]. This

technique is especially beneficial when you have access to a pre-trained model that has

already been trained on a big dataset (often for a separate but related task) and want to

apply its learned representations to a new task.Fine-tuning is an effective strategy that

can save time and computational resources as compared to training a model from start,

particularly when working with limited data or computer resources[37]. It enables you

8

to tap into the information embedded in pre-trained models and tailor it to your specific

requirements, resulting in models that perform well on new tasks with less training data

[38].

1.6 Research Background

An investigation into the classification of ripeness and quality based on tomato fruit

condition images has recently been undertaken. However, a significant constraint arises

when poor-quality images confine the capture of tomatoes to a singular angle, thereby

restricting the comprehensive evaluation of overall fruit condition. The efficacy of such

assessments is contingent upon the scale and diversity of the dataset, and a dataset

lacking in these aspects may struggle to encompass the broad spectrum of fruit

variations. Consequently, limited accuracy and generalizability in the assessment

process may ensue, with challenges potentially encountered in recognizing rare or

uncommon fruit types, introducing errors in classification. To mitigate these issues, it

becomes imperative to curate a comprehensive and diverse dataset, enriched with a

sufficient scale of data, to ensure the precision and reliability of fruit assessment. The

task of extracting pixel-level object instance information from images becomes more

challenging when dealing with complex fruit shapes and overlapping instances. This

complexity can result in difficulties in accurately segmenting and identifying individual

fruits, leading to potential errors in the analysis and classification of fruit types. This

complication hinders the precise determination of individual fruit characteristics within

a cluster, adding an additional layer of complexity to the tomato detection process.

Addressing these challenges in dataset diversity and object occlusion is pivotal to

advancing the accuracy and effectiveness of tomato ripeness and quality classification,

ultimately contributing to the optimization of agricultural practices in tomato

cultivation.

1.7 Problem Statement

Tomatoes highlight the various applications of deep learning in agriculture, as well as

their culinary relevance. These algorithms aid in tasks such as plant health monitoring,

growth optimization, and yield prediction. Deep learning improves crop management

practices by analyzing large volumes of data, such as soil moisture levels and weather

patterns, resulting in higher yield and resource efficiency. Tomatoes are also a common

9

element in many different cuisines around the world, valued for their variety and

nutritional significance. Thus, their dual role emphasizes the junction of technology and

tradition, demonstrating how advances like as deep learning can transform agriculture

while still satisfying gastronomic preferences.Temperature, humidity, sun exposure,

and soil quality are just a few of the variables that affect tomato growth, ripening, and

quality. Analyzing these parameters traditionally entails labor-intensive, error-prone

human observation and data collection. The advancement of deep learning algorithms

has allowed researchers to create methods for the analysis and identification

of tomatoes that are more effective and accurate.

1.8 Motivation

One of the significant benefits of fruit detection research is that it can help automate the

harvesting process. With automated fruit detection systems, farmers can significantly

lower their labor costs and increase productivity. Farmers can enhance harvesting

efficiency by employing deep learning algorithms to pinpoint ripe fruits in fields instead

of manual scanning. These algorithms, trained on extensive datasets, automate fruit

detection, saving time and labor. Such technology ensures timely harvesting,

minimizing waste and maximizing yield. By integrating these algorithms, farming

becomes more sustainable, productive, and profitable, benefiting farmers across scales

while advancing agricultural practices towards greater efficiency and innovation. Deep

learning technology has allowed researchers to pinpoint areas of fruit that are not

growing properly, which may help farmers increase crop yield and minimize wastage.

One of the significant benefits of fruit detection research is that it can help automate the

harvesting process. With automated fruit detection systems, farmers can significantly

lower their labor costs and increase productivity. Instead of manually scanning the

fields for ripe fruits, farmers can rely on deep learning algorithms to identify the exact

location of the fruits, making the harvesting process faster and more efficient. Deep

learning technology has allowed researchers to pinpoint areas of fruit that are not

growing properly, which may help farmers increase crop yield and minimize wastage.

1.9 Objective of Research

This research objectives to:

1. Generate a dataset that incorporates publicly accessible datasets .

10

2. Modify a CNN model (ResNet50V2) to ascertain the quality of tomatoes.

1.10 Organization of the Thesis

The subsequent sections of this thesis delineate a structured progression of the inquiry

into tomato fruit quality identification. Section 2, titled the Literature Review, provides

a comprehensive overview of previous research on fruit quality identification, focusing

on image analysis techniques. Moving forward, Section 3 delves into the datasets

utilized, the features extracted, and the architectural framework implemented in the

study. The outcomes of our experimentation, organized into three distinct facets of the

case study, are consolidated and expounded upon in Section 4. Conclusively, Section 5

encapsulates the culmination of this study, providing a thorough examination of its

findings, future avenues for research, and the inherent contributions to the broader

domain of tomato fruit quality identification.

11

CHAPTER 2

Literature Review

2.1 Introduction

There are a ton of published research that look into various techniques and algorithms

for tomato detection.This study's literatue review section provided an overview of the

body of information while highlighting the various methods and approaches used in to

mato detection.It highlighted any flaws or gaps in the current research and suggests su

bjects for more investigation.

2.2 Scope of Research

There has been a lot of interest in the analysis of fruit and vegetable detection content

in recent years. One of the most important sources of information, besides visual

inspection, is the use of machine learning algorithms to analyze and interpret data from

various sensors. These sensors can provide valuable information about the fruit's size,

color, texture, and even its internal quality parameters, such as sugar content or

firmness. Researchers have made it simple for farmers to fully comprehend the

condition of their crop and make well-informed decisions about harvesting, sorting, and

post-harvest treatments by merging these sensor data with the CNN model's analysis of

tomato fruit images. The majority of the studies worked on short-scale images, but we

created a dataset by collecting images from Google Images and existing datasets. This

dataset allowed us to train our model on a larger and more diverse set of tomato fruit

images. To improve accuracy, we modified the ResNet50V2 model.

2.3 Literature Review

Many researchers have contributed to the development of a system that can detect Fruit

Detection from images. The following is a content analysis of this research study. An

essential component of post-harvest procedures in agriculture is the evaluation of fruit

quality. Conventional techniques, which mostly depend on manual examination, are

laborious and subjective, which causes inefficiencies and irregularities in the

assessment process. Research into automated solutions has been prompted by the need

for a quick and accurate way to analyze the quality of fruit, with an emphasis on the

12

utilizing cutting-edge technology like deep learning[39].In the historical evolution of

fruit detection methodologies, early endeavors were grounded in classical machine

vision techniques, relying on hand-crafted features for the detection and classification

of fruits. Various approaches, encompassing SVM binary classifiers, pixel-level

segmentation based on color spaces, and blob-level processing, were explored for the

identification of tomatoes[40]. However, these methodologies presented inherent

challenges, such as susceptibility to false positives, imprecise object masks, and

limitations in accurately pinpointing individual fruit centroids. While recent advances

have marked a transformative shift in this landscape, the quest for precision and

sustainability in agricultural practices remains an ongoing pursuit [41]. The research

focused more on the fruit's look.

Researchers developed a fuzzy logic method for maturity grading by considering the

color, size, and form of the tomato fruit [42]. Discussed a cost-effective maturity

grading system for tomatoes that uses image processing algorithms to identify six key:

green, breakers, turning, pink, light red, and red stages of ripening[43]. Regarding

maturity grade detection, a 98% overall accuracy rate was attained. The paradigm shift

in fruit detection has been notably catalyzed by the integration of deep learning

technologies, particularly convolutional neural networks (CNN). Diverse CNN

architectures, including AlexNet, GoogLeNet, VGGNet, and ResNet, have transcended

various domains, with researchers leveraging these frameworks within plant pathology

for tasks ranging from creating candidate structures to achieving precise bounding box

positioning through regression [44].To find flaws in photos of 1200 tomatoes fruit,

three deep learning models—VGG16, InceptionV3, and ResNet50—were employed.

Performing better than the others, VGG16 achieved an accuracy of 95.75%–

98.75%.Precision agriculture has emerged as a critical approach for enhancing crop

yield and resource efficiency [45]. In this study, we investigate the application of

Convolutional Neural Networks (CNNs) for plant image recognition and classification

in the context of precision agriculture. The study utilizes a dataset comprising high-

resolution images of various plant species commonly found in agricultural settings[46].

Preprocessing techniques are employed to standardize image quality and remove noise,

followed by feature extraction using CNNs. The CNN model architecture is optimized

to effectively capture spatial hierarchies and patterns in plant images, facilitating

accurate classification of different plant species and conditions. We conduct

13

comprehensive experimentation to evaluate the performance of the CNN model in

terms of accuracy, precision, recall, and F1-score. Additionally, we explore the

robustness of the model across different environmental conditions, such as variations

in lighting, weather, and plant growth stages [47].

Within the domain of fruit detection, object detection, a pivotal facet of deep learning,

has garnered attention for its informativeness, albeit with an inherent dependency on

complex training data. Noteworthy approaches in this context involve region-based

convolutional neural networks (R-CNNs), such as Fast-RCNN and Faster-RCNN,

utilizing the selective search method for region proposal detection. Conversely, the You

Only Look Once (YOLO) detector partitions the image into regions, predicting

bounding boxes and probabilities for each region, offering speed advantages over

traditional methods[48]. However, these techniques often encounter challenges in

conveying pixel-level object instance information, particularly in scenarios involving

overlapping or occluding objects. As the trajectory of fruit detection advances, striking

a balance between speed and precision remains a critical pursuit in optimizing

agricultural practice [49].

Crop diseases have a significant impact on production, hence their detection and

identification are critical. Deep learning and intelligent firming can be used to

automatically identify damaged crops. As part of this research plan, we present highly

efficient convolution neural network (CNN) architectures for detecting leaf illnesses.

This project's training and testing steps need the creation of a potato leaf database. CNN

was used to extract the illness's features from the input photos of the given training

dataset, allowing the sickness to be categorized. 1700 images of potato leaves were used

to train the model, followed by 600 photographs for testing. Citrus ailments were

identified using Convolutional Neural Networks, Deep Learning, base learning, and

transfer learning [50]. The suggested architecture beats other existing ResNet models

in terms of accuracy, obtaining a score of 99.62% based on training, testing, and

experimental results.Current gene regulatory network (GRN) inference approaches are

renowned for concealing a large number of indirect interactions inside predictions.

Filtering out indirect connections from direct ones continues to be a significant

difficulty in GRN reconstruction. To overcome this issue, we devised a redundancy

silencing and network enhancement technique (RSNET) to infer GRNs. the redundant

interactions including weak and indirect connections are silenced by recursive

14

optimization adaptively, and the highly dependent nodes are constrained in the model

to keep the real interactions. This study provides a useful tool for inferring clean

networks[51].The most crucial crop for both socioeconomic stability and global food

security is rice. A portion of the global population considers rice to be a staple food,

however the issue is that all types of rice are plagued by various illnesses and pests. As

a result, identifying and treating rice plant illnesses is essential to guaranteeing the

quality of healthy and appropriate rice growth. In order to get the best accuracy, the

Convolutional Neural Network (CNN) algorithm was used in this study to classify

diseases on the leaves of rice plants [52]. Several parameters and architecture were

tested. This study was conducted image classification of rice plant disease using CNN

architecture ResNet-50V2 with data using preprocessing Augmentation. The test was

conducted with three optimizers such as SGD, Adam, and RMSprop by combining

various parameters, namely epoch, batch size, learning rate, and SGD and RMSprop

optimizers. Division of image data with 70:30 ratio of training data and test data; 80:20;

90:10. From these results, it was found that Adam was the best optimizer in the 80:20

data division in this study with an accuracy level of 0.9992, followed by the SGD

optimizer with an accuracy level of 0.9983, while the RMSProp optimizer was ranked

third with an accuracy level of 0.9978 [53].There are two fully linked layers and four

convolution layers in the FASNet model. Our self-development FASNet CNN model

made use of the pre-trained deep learning models. To reduce the number of parameters

in the model and the channel depth, the first convolutional layer uses a 1x1 kernel size

on each pixel as a fully linked connection. The purpose of the dropout layer and early-

stopping class is to restrict the amount of neural connections and avoid overfitting. An

open-source collection of 6,432 training and testing photos served as the source of the

dataset for this investigation. As a consequence, our method identified healthy people,

those with pneumonia, and COVID-19 infected people with 98.48% accuracy. We

anticipate that the FASNet model can be utilized in future development research to aid

with COVID-19 diagnosis, based on these encouraging preliminary results. When

compared to other well-known models like ResNet50V2 and MobileNetV2, the

FASNet model's output shows a strong correlation[54].In this research, two simple yet

very effective methods for facial attribute estimation in various image circumstances

are presented. The suggested methods make use of a quick and simple face alignment

process for preprocessing, after which they employ the lightweight Convolutional

Neural Network (CNN) architectures MobileNetV2 and Nasnet-Mobile to predict facial

15

features. When it comes to accuracy and processing speed, both models perform

similarly.Our suggested technique outperforms the top state-of-the-art model in

processing speed and outperforms the fastest existing model in accuracy, according to

a rigorous comparative evaluation against state-of-the-art methodologies concerning

both processing time and accuracy. Moreover, our approach is intuitive and well-suited

for mobile device implementation. To summarize, this study introduces two novel

techniques for estimating facial attributes in images, showcasing their simplicity,

effectiveness, and efficiency. By leveraging fast face alignment techniques and

lightweight CNN architectures, we achieve competitive performance in accuracy and

speed. Our method outperforms existing models in both metrics, making it particularly

suitable for real-time applications and mobile deployment[55].

To improve the precision of domestic industrial defect detection, this research suggests

a Two-Stage Industrial Defect Detection Framework. The Optimized-Inception-

ResnetV2 and Improved-YOLOv5 models, each of which serves a distinct purpose of

defect classification and location, form the foundation of the system [56]. There are

improvements made to YOLOv5's multiscale detection layer, feature scales, and

backbone network in order to increase the first-stage recognition's efficacy in detecting

small flaws with high similarity on steel surfaces. Furthermore, the convolutional block

attention module (CBAM) is integrated into the Inception-ResnetV2 model in the

second stage of recognition, which is succeeded by network architecture and loss

function optimizations. Several datasets, such as Pascal VOC2007, NEU-DET, and

Enriched-NEU-DET, are used in comparative tests, which show notable gains in testing

outcomes. With an AUBO-i5 robot with an Intel RealSense D435 camera, the two-stage

framework achieves a mean average precision (mAP) of 91.0% in real industrial

situations and 83.3% on the Enriched-NEU-DET dataset. This demonstrates the

framework's superiority and versatility in the identification of industrial

defects[57].Computer vision-based scene classification technology is widely used in

many different fields. Nevertheless, many current computers vision classification

models find it difficult to keep up with the demands of modern scene categorization

jobs as images get more complex. These responsibilities require considering several

interrelationships inside the image in addition to objects, backdrops, and spatial layouts

[58]. In order to handle complicated scene classification difficulties, this study proposes

an approach that improves dataset processing by analyzing existing scene classification

16

algorithms in conjunction with the Xception model. A serialized image improvement

technique is used to increase the size of the dataset and magnify picture features by

using image enhancement technologies.By utilizing the Xception model, the method

collects information from images and produces a more robust scene categorization

model. Results from experiments show how well the Xception model performs scene

categorization tasks, making up for the shortcomings of classic Convolutional Neural

Networks(CNN) models in terms of feature extraction and generalization capacity [59].

This method presents a pre-trained Convolutional Neural Network (CNN) model

specifically intended to identify benign or malignant pre-segmented breast cancer

masses in mammography pictures. Through meticulous investigation and analysis, the

system employs various methods to address the challenge of limited training data.

These methods include data augmentation, which artificially expands the dataset by

generating modified versions of existing data points. Targeted pre-processing

techniques are also utilized to enhance the quality and relevance of the input data [60].

Additionally, transfer learning is leveraged to transfer knowledge from a pre-trained

model to the current task, enabling the network to benefit from features learned on a

larger dataset. By integrating these approaches, the system effectively mitigates the

limitations posed by small training datasets, improving the model's robustness and

performance [61]. The system is based on a modified DENSENET201 architecture that

has undergone extensive training and testing to overcome categorization difficulties.

Data from the RGB color model, which includes 2480 benign and 5429 malignant

instances, is used to train the CNN model. The findings show a 97% accuracy rate, with

99% precision rates for benign cases and 83% precision rates for malignant cases. For

benign instances, the recall rates are 83%, while for malignant situations, they are 99%.

In general, the accuracy of the provided DENSENET201 model is better than that of

earlier approaches for this system[62].In comparison to earlier models, this research

presents EfficientNetV2, a unique family of convolutional networks that is intended to

increase training time and parameter efficiency. These models are created by combining

scaling and training-aware neural architecture search to concurrently maximize

parameter efficiency and training speed. New techniques like Fused-MBConv broaden

the search space for these models [63]. Results from experiments show that

EfficientNetV2 models can be up to 6.8 times smaller and train substantially faster than

state-of-the-art models. An improved progressive learning strategy that dynamically

modifies regularization methods like data augmentation in tandem with picture size is

17

suggested as a solution to this accuracy decline. EfficientNetV2 models perform better

with progressive learning than earlier models on datasets including ImageNet, CIFAR,

Cars, and Flowers [64]. EfficientNetV2 outperforms more contemporary models like

ViT by 2.0% accuracy on the ImageNet ILSVRC2012 dataset after pretraining on the

ImageNet21k dataset. This is achieved while training 5 to 11 times quicker with the

same computational power [65].The purpose of this study is to introduce a deep

learning approach to traffic sign recognition, with a focus on identification and

classification. Using the ResNet-50, VGG16, RegNetX002, and DenseNet121 models,

the study uses transfer learning. Transfer learning is the process of extracting

characteristics from images using pre-trained models and then training a new model for

detection. Each transfer learning model's accuracy rates are calculated using the Traffic

Signs dataset, which contains 162 more special classes in addition to the GTSRB

dataset [65].Diagnosing defects in electric motors is critical for the industrial sector

because of the potential losses caused by equipment downtime. This study addresses

the issues associated with the quality and amount of motor data by offering an

intelligent failure detection model based on Deep Transfer Learning (DTL) and

InfraRed Thermal (IRT) pictures. A In addition to the modified ResNet architecture, a

cropping layer is incorporated into the network to identify regions of interest [67]. This

layer facilitates focusing on specific areas within the input data. Subsequently,

hyperparameter optimization is conducted using Random Search (RS). RS

systematically explores a predefined hyperparameter space to identify the combination

that yields optimal performance [68]. By integrating these components, the network

becomes adept at identifying and processing relevant regions within the input, while

the hyperparameter optimization ensures that the model's parameters are fine-tuned for

improved performance on the given task. cropping layer is also added to the network to

designate regions of interest, followed by hyperparameter optimization via Random

Search (RS) . The results show that the RegNetX002 model performs well in fault

classification, with an accuracy of 98.18% in 3245 seconds. Overall, tests applying deep

transfer learning demonstrate significant potential for adapting to machinery failure

diagnosis, particularly when leveraging Infrared Thermal data [69] .

Action recognition plays a pivotal role in computer vision, yet current models come

with significant computational overhead, limiting their deployment on mobile devices

for real-world applications. of real-time action recognition, distinct from traditional

18

inference settings. Results show that models, which have a 6x speed gain while

preserving comparable accuracy to cutting-edge techniques, can efficiently meet real-

time requirements on mobile devices. Notably, this research is the first attempt to

implement current deep learning action recognition models on mobile devices, paving

the path for widespread use in real-world applications [70].

TABLE 2.1 KEY FINDINGS OF THE PREVIOUS LITERATURE

Author and year Title Method

s/Algori

thms

Findings

Ibrahim, Nehad M.,

Dalia Goda Ibrahim

Gabr, Atta-ur Rahman,

Sujata Dash, and Anand

Nayyar [71].

81, no. 19 (2022):

pp.27783-27798.

A deep learning

approach to

intelligent fruit

identification

and family

classification

CNN This study developed a

deep learning model using

fruit photos from 52 species

across four families for fruit

identification. The model

achieved a 93% prediction

success rate and 99.82%

accuracy for testing and

training.

Ünal, Haci Bayram,

Ebru Vural, Burcu Kir

Savaş, and Yaşar

Becerikli [72].

pp. 1-5,

 IEEE ,2020.

Fruit recognition

and

classification

with deep

learning support

on embedded

system (fruitnet).

ConNN,

Image

Processi

ng

Method

The proposed study uses

image processing methods

to classify fruits, reducing

time, cost, and labor losses.

A Convolutional Neural

Networks (nNN) deep

learning model is

developed on the Keras

platform. The model is

tested on 20 different fruits

in two data sets, and finally

on a Jetson Nano card in

real time

Gill, Harmandeep

Singh, Osamah Ibrahim

Khalaf, Youseef

Alotaibi, Saleh

Alghamdi, and Fawaz

Alassery

[73].

 33, no. 1

2022

Multi-Model

CNN-RNN-

LSTM Based

Fruit

Recognition and

Classification

CNN,

RNN,

LSTM

The deep learning

algorithm ensemble for

fruit categorization is

proposed in this research.

The suggested strategy

performs better than the

current methods in terms of

accuracy analysis and F-

measure, according to

experiments conducted on

ten photos of fruit.

19

Septiarini, Anindita,

Hamdani Hamdani,

Sri Ulan Sari, Heliza

Rahmania Hatta,

Novianti Puspitasari,

and Wiwien

Hadikurniawati [74].

pp. 92-96.

IEEE, 2022.

Image Processing

Techniques For

Tomato

Segmentation

Applying K-Means

Clustering and

Edge Detection

Approach.

K-

means

clusteri

ng ,

HSV,

Canny

operat

or.

With an emphasis on region

of interest identification,

pre-processing,

segmentation, and post-

processing, this work

presents a tomato

segmentation approach for

plantation fields. The

performance evaluation

revealed segmentation

accuracy averages of 2.74%,

4.77%, and 91.43%.

Sudharshan, Duth P.,

and T. N. Jhansy

[75].

pp. 1-6.

IEEE, 2022.

Tomato Fruits

Disease Detection

Using Image

Processing.

Enhan

ced

SVM

In farming, computer

learning techniques reduce

labor costs and optimize

harvest activities by

improving fruit recognition

and classification.

Experimental data indicates

that 94.036 percent of

diseases can be diagnosed

accurately using these

techniques.

Mureşan, Horea-

Bogdan [76].

pp. 103-107.

 IEEE, 2022.

An Automated

Algorithm for Fruit

Image Dataset

Building.

single

shot

multib

ox

detecto

r

The paper

presents an algorithm that

generates annotation files

for bounding boxes around

fruits using pictures from the

Fruits-360 collection. The

method minimizes the

necessity for gathering data

in the actual world by

considering differences in

illumination and occlusion

in outdoor settings. The

trained model outperformed

other innovative models,

with a mean average

accuracy of 0.750.

Legaspi, Jericho,

John Raphael

Pangilinan, and Noel

Linsangan [77].

 pp. 613-618. IEEE,

2022.

Tomato Ripeness

and Size

Classification

Using Image

Processing.

Raspbe

rry Pi,

Raspbe

rry

Camer

a v1.3,

Ultraso

nic

sensor,

The study created an image

processing system to

categorize the size and

maturity of tomatoes. The

system's accuracy score for

classifying ripeness was

92.86%, while its accuracy

score for classifying size

was 96%.

20

Tunio, Muhammad

Hanif, Li Jianping,

Muhammad Hassaan

Farooq Butt, Imran

Memon, and Yumna

Magsi[78].

pp. 1-5. IEEE, 2022.

Fruit Detection and

Segmentation

UsingCustomized

Deep Learning

Techniques

U-Net

archite

cture

With the contraction path

encoding characteristics U-

Net architecture and the

expansion path decoding

resolution, the approach

employs segmentation to

discover and locate objects.

For an enhanced crop, the

model projects accuracy and

test image loss of 98.66%

and 0.0268%, respectively.

Nagesh, A.

Seetharam, and G. N.

Balaji [79].

vol. 1, pp. 1-6. IEEE,

2022.

Deep Learning

Approach for

Recognition and

Classification of

Tomato Fruit

Diseases.

VGG1

6

This research suggests a

convolutional neural

network-based technique for

tomato disease detection in

color photos. The technique

demonstrates effective

prediction and early

detection of tomato illnesses

by using an augmentation

strategy to build a dataset

with big samples.

Azman, Nur Fitrah,

Nor Ashikin

Mohamad Kamal,

and Norizan Mat

Diah [80].

pp. 119-124.

 IEEE, 2023.

Tomato Fruit

Ripening

Classification

Using Wavelet-

Based Feature

Extraction and

Multilayer

Perceptron.

DWT,

MLP

This study aimed to

accurately classify a diverse

range of data samples using

the combination of discrete

wavelet transform and

multilayer perceptron

classifiers. The achieved

accuracy of 81%

demonstrates the

effectiveness of this

approach in accurately

categorizing the data.

Hong, Suk-Ju,

Seongmin Park,

Chang-Hyup Lee,

Sungjay Kim,

Seung-Woo Roh,

Nandita Irsaulul

Nurhisna, and

Ghiseok Kim [81].

IEEE Access (2023).

Application of X-

ray imaging and

convolutional

neural networks in

the prediction of

tomato seed

viability.

CNN Based on X-ray scans,

models were constructed in

this work to evaluate tomato

seed viability. The models

were evaluated for structural

integrity once they were in

the seedling stage.The

CNN-based model had a

greater accuracy of 86.01%

in comparison to the image-

processing-based model,

indicating its possible

application in determining

the viability of tomato seeds.

21

Kushwaha, Arvinda

[82].

pp. 1-5.

IEEE, 2023.

Fruit Classification

Using Optimized

CNN.

CNN The study demonstrated the

effectiveness of CNN

technology in fruit

classification, with a

TensorFlow backend model

achieving 96.88% accuracy

after 40 training epochs,

demonstrating the practical

viability of such approaches

in real-world applications.

Mehta, Shiva, Vinay

Kukreja, and Rishika

Yadav[83].

pp. 309-314.

 IEEE, 2023.

A Federated

Learning CNN

Approach for

Tomato Leaf

Disease with

Severity Analysis.

CNN The study classifies and

detects tomato leaf

infections into five severity

categories using a CNN

model with federated

learning. With an accuracy

range of 96% to 98%, the

model regularly produces

excellent results. The model

has the highest recall when it

comes to class 5 (illness 4),

indicating that agricultural

settings might benefit from

its use.

Saini, Archana,

Kalpna Guleria, and

Shagun Sharma[84] .

pp. 01-06.

 IEEE, 2023.

Tomato Leaf

Disease

Classification

using

Convolutional

Neural Network

Model.

CNN Tomato leaf diseases were

identified and categorized

using Convolutional Neural

Networks (CNNs), a deep

learning technique. The

model was developed using

Adam and the SGD

optimizer, and the dataset

was sourced from Kaggle.

With a loss value of 0.0044

and an accuracy of 0.9966,

the CNN model performed

well.

Singh, Utpal Kant,

Rajnish Kumar,

Saurabh Kumar,

Shibasish Kar, and

Santos Kumar

Baliarsingh. [85].

pp. 1-6.

 IEEE, 2023.

Detection of

Diseases in

Tomato Plants

using

Convolutional

Neural Network.

CNN Their study, produced an

average classification

accuracy of 82.4%,

demonstrating how these

cutting-edge approaches

may perform better than

conventional ones.

22

Roy, Kyamelia,

Sheli Sinha

Chaudhuri, Jaroslav

Frnda, Srijita

Bandopadhyay,

Ishan Jyoti Ray,

Soumen Banerjee,

and Jan Nedoma.

[86].

IEEE Access

11 (2023):

14983-15001.

Detection of

tomato leaf

diseases for agro-

based industries

using novel PCA

DeepNet.

F-

RCNN

,

GAN,

PCA

DeepN

et

The system integrates

Generative Adversarial

Network (GAN) and a

customized Deep Neural

Network (PCA DeepNet)

with Principal Component

Analysis (PCA).The

findings indicate an average

precision of 98.55% and a

classification accuracy of

99.60%.

Hsieh TH, Kiang JF

[87].

Sensors 20, no. 6

(2020): 1734.

Comparison of

CNN algorithms

on hyperspectral

image

classification in

agricultural lands.

CNN The HSI data of a crop

agriculture in Salinas Valley

and a mixed vegetation

agriculture in Indian Pines

were used to compare the

performance of these CNN

algorithms. The highest

overall accuracy on these

two cases are 99.8% and

98.1%,

Yalcin H, Razavi S

[88].

In 2016 Fifth

International

Conference on Agro-

Geoinformatics

2016

Plant classification

using

convolutional

neural networks.

CNN Convolutional Neural

Networks (CNNs) have

shown remarkable success

in image classification tasks,

including plant species

identification. In this study,

we explore the effectiveness

of CNNs for plant

classification using a

comprehensive dataset of

plant images. We propose a

CNN architecture tailored

for plant classification,

leveraging transfer learning

and data augmentation

techniques.

Kayabasi A, Toktas

A[89].

Neural Network

World 28.3 (2018)

Automatic

classification of

agricultural grains:

Comparison of

neural networks

ANN

it would be exciting if the

models can accumulate

knowledge to handle

continual tasks. Towards

this goal, we propose an

ANN-based continual

classification method via

memory storage and

retrieval, with two clear

advantages: Few data and

high flexibility. This

23

proposed ANN-based model

combines a convolutional

neural network (CNN) and

generative adversarial

network (GAN).

Kujawa S, Niedbała

G

[90].

PP-497

Artificial neural

networks in

agriculture

ANN Artificial neural networks

are one of the most

important elements of

machine learning and

artificial intelligence. They

are inspired by the human

brain structure and function

as if they are based on

interconnected nodes in

which simple processing

operations take place.

Gupta A, Nahar P

[91].

PP10235-10244

Journal of Ambient

Intelligence and

Humanized

Computing

Classification and

yield prediction in

smart agriculture

system using IoT

ML Machine learning (ML)

methods achieve the

requirement of scaling the

learning performance of the

model. This paper

introduces a hybrid ML

model with IoT for yield

prediction. This work

involves three phases :

preprocessing, feature

selection(FS) and

classification. Initially, the

dataset is preprocessed, and

FS is done on the basis of

Correlation based FS

(CBFS) and the Variance

Inflation Factor algorithm

(VIF). Finally, a two-tier

ML model is proposed for

IoT based smart agriculture

system.

Saad AM, Abu-

Naser SS[92].

2023

Rice Classification

using ANN

ANN Rice classification plays a

vital role in ensuring food

security and quality control.

In this study, we propose an

approach utilizing Artificial

Neural Networks (ANN) for

the automated classification

of rice grains based on their

varieties. The dataset

comprises high-resolution

images of different rice

varieties obtained from

various sources.

24

Panthakkan A, Anzar

SM, Jamal S

[93].

Concatenated

Xception-

ResNet50—A

novel hybrid

approach for

accurate skin

cancer prediction.

ResNet

50

The suggested approach's

performance is contrasted

with that of a Deep CNN and

other cutting-edge transfer

learning models. The

performance of the

recommended technique is

evaluated using the Human

Against Machine

(HAM10000) dataset. 10,500

skin photos were used in this

investigation. The sliding

window method is used to test

and train the model. With a

97.8% prediction accuracy,

the concatenated X-R50

model that has been

suggested is state-of-the-art.

Table 2.1 provides an overview of the major conclusions drawn from the prior research.

There is always room for more research in every new piece. After evaluating all the

information, we were able to determine the viability of our system and research.

2.4 SUMMARY

The literature study identifies a new trend in the assessment of fruit quality in

agricultural contexts through the application of deep learning techniques. There is a

significant gap in the application of these technologies to tomatoes, despite the fact that

a great deal of study has been done on the general detection of fruit problems. By

providing a focused examination of deep learning-based methods for identifying and

evaluating tomato fruit condition, this paper seeks to close this gap.Tomatoes present

unique challenges in terms of their diverse shapes, sizes, and susceptibility to various

conditions affecting their quality. The paper underscores the need for specialized

methodologies tailored to address these challenges, emphasizing the importance of a

dedicated exploration into the realm of tomato fruit condition detection.

By exploring the intricacies of deep learning applications for tomatoes, the study makes

a substantial literary contribution. It not only recognizes the wider interest in applying

deep learning to agriculture, but it also focuses specifically on the particular field of

tomato fruit quality evaluation. The objective is to improve the comprehension and

usefulness of deep learning methods in handling the complexities related to tomato

fruits, which are not only abundant but also multipurpose. It not only recognizes the

25

wider interest in applying deep learning to agriculture, but it also focuses specifically

on the field of tomato fruit quality evaluation. The objective is to improve the

comprehension and usefulness of deep learning methods in handling the complexities

related to tomato fruits, which are not only abundant but also multipurpose. This

dedicated exploration is poised to advance the field by providing insights into the

nuances of tomato fruit condition detection, paving the way for more accurate and

efficient methods. As agriculture increasingly adopts technological advancements, the

paper seeks to bridge the gap between general fruit quality assessment and the unique

characteristics of tomatoes.

26

CHAPTER 3

Methodology

3.1 Introduction

I provided short reports on the identification and functioning of Tomato detection at

various stages of the procedure in this part.

3.2 Methodology

Recent investigations have specifically delved into the efficacy of employing deep

learning methodologies for the tracking and analysis of fruit. The utilization of

computer vision or deep learning in scrutinizing images or videos of fruit quality

introduces a novel dimension to the assessment of quality severity. The CNN transfer

learning technique facilitates the acceleration of training and the utilization of pre-

trained weights. This approach optimizes the use of available data by reutilizing weights

acquired from prior tasks. Moreover, the performance of CNNs can be enhanced

through adjustments to the learning rate and the adoption of various optimization

algorithms, such as stochastic gradient descent or momentum-based techniques.

Addressing this challenge, we employ an adapted CNN transfer learning method

tailored for the precise identification of tomato events in images depicting tomato

quality. This method amalgamates the advantages of transfer learning with specific

modifications customized for the task of tomato event identification. Not only does this

modified CNN transfer learning method enhance training efficiency, but it also elevates

the overall performance of tomato event classification, establishing it as a valuable tool

for agricultural applications and crop management. To further refine the accuracy of

the deep learning-based approach, this paper advocates for a set of strategies, including

the amalgamation of data from diverse sources, the utilization of multi-resolution input,

and the selection of optimal hyperparameters.

The proposed methodology focuses on employing a deep learning-based modified

ResNet50V2 Convolutional Neural Network (CNN) with transfer learning to conduct

comprehensive analysis of diverse imagery, indicating a robust approach for extracting

meaningful insights from varied visual data sources. The approach enhances

27

comprehensive image analysis capabilities, showcasing versatility in understanding and

interpreting visual data across various domains.

3.3 Research Activity

In this section, we detail the comprehensive process undertaken in my study,

encompassing the collection and annotation of data, the architecture of our deep

learning model, and the subsequent training and testing phases. The primary

contribution of our work lies in the meticulous compilation of a diverse dataset

featuring tomato imagery, systematically labeled with corresponding classes, fostering

an extensive range of tomato conditions The dataset creates a solid basis for training

and testing our suggested deep learning model by combining photos from various

sources. This varied compilation adds to the overall robustness of the model by

improving its performance and adaptability in various settings. Notably, our manual

labeling process enhances the precision of classification. I chosen approach involves

the utilization of a modified ResNet50V2 classifier, a decision substantiated by its

ability to yield notably more accurate predictions. To elucidate the entire process, we

provide a comprehensive workflow diagram (Figure 3.1) and a Flow chart (Figure 3.2)

of our model that offers both a detailed explanation and a visual representation of my

tomato detection system.

Figure 3.1:Workflow Diagram of our Research

28

Figure 3.2: Flow chart of proposed CNN model

3.3.1 Dataset generation

To train and assess the efficacy of our tomato condition detection model, I curated a

comprehensive dataset sourced from multiple channels to ensure diversity and

inclusivity. This dataset comprises a total of 3345 images gathered from reputable

29

platforms such as Kaggle, Mendeley Data[94], and other organizations specializing in

agricultural imagery. By amalgamating datasets from various sources, my goal was to

encompass a broad spectrum of tomato conditions, thereby facilitating a robust training

process. The largest contribution to our dataset comes from a collection of 2036 images

sourced from Kaggle. To maintain a balanced representation of tomato classifications

and avoid redundancy[95], some images were selectively omitted. The labeling process

involved categorizing tomatoes into four distinct classes, representing conditions such

as damages, maturity levels, ripeness, and unripens. This meticulous labeling ensures

that the model can discern nuanced differences in tomato conditions accurately.

Additionally, Figure 3.3 provides a visual representation of the labeled images within

the Tomatoes Dataset, aiding in the comprehension of my dataset's composition and

organization.

Figure 3.3: Example of Tomatoes Dataset.

3.3.2 Data Pre-processing

To evaluate the performance of our model,I utilized a dataset partitioned into training

(comprising over 62.3%), validation (20.6%), and testing (less than 17.1%) sets. Prior

to training, preprocessing steps were implemented, which included resizing the images

to dimensions of (224, 224) and normalizing the RGB channels using mean and

standard deviations obtained from the ImageNet dataset. This normalization technique

30

transformed pixel values from the original range of 0 to 255 to a normalized range of 0

to 1, ensuring uniformity in the input data and promoting convergence during the

training phase. Additionally, the use of the ImageNet dataset for normalization serves

to enhance the model's generalization capabilities by aligning the data distribution with

a widely used benchmark dataset. Facilitating convergence during the training process.

Figure 3.4: Split Data of Tomatoes Dataset

Figure 3.5: Sample Images in Tomatoes Dataset

3.3.3 Data Augmentation

In addition to utilizing various picture augmentation methods like random flipping,

31

contrasting, and rotating, we implemented strategies to ensure a well-balanced dataset,

crucial for robust model training. These techniques not only diversified the dataset but

also promoted resilience in the face of varied real-world scenarios. Following the

augmentation process, I employed a modified convolutional neural network (CNN) to

classify the images. This holistic approach aimed to bolster the model's ability to

generalize and recognize patterns effectively, thereby improving its overall efficacy in

object categorization tasks. Moreover, by integrating augmentation techniques into the

training pipeline, I aimed to mitigate overfitting and enhance the model's adaptability

to unseen data, ultimately fostering greater performance and reliability in practical

applications. Here are some augmented images showing below:

Figure 3.6: Augmented Image in Tomatoes Dataset

3.3.4 Modified ResNet Architecture

These modifications might include variations in the number of layers, introduction of

new layers or modules, changes in activation functions, or the addition of attention

mechanisms, among others.

3.3.5 ResNet Architecture Overview

The ResNet architecture is renowned for its distinctive structure, featuring multiple

residual stages, each composed of several residual blocks. Within these blocks, two

32

convolutional layers are stacked, each followed by ReLU activation functions and batch

normalization layers. However, what truly sets ResNet apart is its ingenious solution to

the vanishing gradient problem. By incorporating identity shortcut connections, also

known as skip connections, ResNet facilitates the smooth flow of gradients during

training. These shortcut links enable the network to bypass one or more layers, allowing

gradients to propagate more effectively through the network. This innovative design

not only addresses the issue of vanishing gradients but also contributes to the model's

ability to train deeper architectures without degradation in performance.

3.3.6 Modification for Improved Performance

In my quest to refine the original ResNet architecture, my primary focus was on

fortifying its capabilities through the strategic introduction of skip connections. This

augmentation entails integrating shortcut links within the architecture, which play a

pivotal role in smoothing the flow of gradients during the training process. By

enhancing gradient propagation, this modification fundamentally contributes to an

overarching enhancement in performance and training efficiency, particularly within

the ResNet50V2 framework. The incorporation of skip connections addresses a

fundamental challenge in deep neural network training: the vanishing gradient problem.

By enabling the direct flow of gradients through the network, skip connections

effectively mitigate the issue of diminishing gradient magnitudes, thereby fostering

more effective and stable training dynamics. This not only expedites convergence

during training but also enhances the model's ability to capture intricate patterns and

nuances within the data. Moreover, the introduction of skip connections serves to

augment the model's depth without exacerbating the optimization difficulties typically

associated with deeper networks. This enables ResNet50V2 to leverage its increased

capacity for feature representation, leading to superior performance in tasks such as

image classification, object detection, and semantic segmentation.

Furthermore, the strategic incorporation of skip connections aligns with broader trends

in deep learning research, which increasingly emphasize the importance of architectural

design in optimizing model performance. By carefully engineering the connectivity

patterns within the network, we aim to harness the full potential of ResNet50V2,

unlocking new levels of performance and efficiency in complex computational tasks.

This approach reflects a shift towards more thoughtful and deliberate architectural

33

choices, recognizing that model design plays a crucial role in determining overall

effectiveness. The deliberate integration of skip connections represents a pivotal

advancement in refining the ResNet architecture, marking a significant stride towards

achieving state-of-the-art performance in deep learning-based image analysis and

classification tasks. This architectural enhancement underscores our commitment to

pushing the boundaries of model efficacy and advancing the field of computer vision.

As we continue to explore novel architectural innovations and optimization techniques,

we are poised to further enhance the capabilities of ResNet and contribute to the

ongoing evolution of deep learning methodologies.

In the development of my customized ResNet50V2 variant, I implemented specific

alterations to the architecture to tailor it to our specific task. Firstly, I removed the top

layer and replaced it with a sequential model comprising three new layers. This

restructuring allowed us to take a more focused approach to feature extraction, ensuring

that the model learns relevant patterns from the input data more effectively.

Subsequently, we introduced a dense layer equipped with 800 neurons, accompanied

by a ReLU activation layer. This adjustment was carefully designed to enhance the

model's capability to extract meaningful features from the input data, enabling it to

capture and represent essential information more accurately. To mitigate the risk of

overfitting and ensure the model's generalization ability, I incorporated a dropout layer.

This regularization technique helps prevent the model from memorizing noise in the

training data, promoting better performance on unseen instances during inference.

The final layer in my modified architecture is an output layer featuring a softmax

activation function. This crucial component plays a pivotal role in generating

probability distributions over the target classes, enabling the model to make informed

predictions with confidence. Furthermore, to provide a comprehensive understanding

of these architectural modifications and their impact on model performance, we include

a detailed illustration in the form of a figure. This visual aid serves to elucidate the

intricacies of my customized ResNet50V2 architecture, allowing for easier

comprehension and assessment of the model's design and functionality. The following

Figure 3.7 depicts the architecture of the Frozen Layer of ResNet50V2, highlighting

the structural changes implemented to optimize the model for my specific task. These

changes are tailored to optimize the model's functionality and efficiency in addressing

34

the specified objective, indicating a targeted approach to adapting the ResNet50V2

architecture for improved task-specific performance.

Figure 3.7: Frozen Layer of ResNet50V2 Architecture

35

Figure3.8: Modified ResNet50V2 Architecture

In Figures 3.8 and 3.9, I present the upgraded ResNet50V2 model, which incorporates

a newly integrated flattening layer aimed at expediting data processing. This

architectural refinement is strategically designed to enhance information propagation

within the network by optimizing data transfer and processing efficiency. By

implementing this modification, my goal is to elevate the model's performance and

augment its capacity for comprehending intricate patterns embedded within the neural

network's layers. The introduction of the flattening layer serves a crucial role in

streamlining the transformation of multidimensional data into a one-dimensional

format. This process facilitates smoother data flow throughout the network, thereby

enhancing the model's efficacy in extracting significant features from the input data. By

simplifying the data representation process, the flattening layer enables the model to

more efficiently capture and analyze complex information, ultimately leading to

improved performance in various tasks, especially those demanding intricate pattern

recognition, such as image classification. The integration of the flattening layer

underscores our commitment to optimizing the ResNet50V2 model for real-world

applications. By enhancing the model's ability to discern subtle variations and intricate

36

details within the data, I aim to ensure more accurate classification outcomes across a

wide range of tasks and scenarios. This enhancement not only bolsters the model's

performance but also enhances its versatility and applicability in diverse domains,

further solidifying its position as a powerful tool in the realm of deep learning-based

image analysis and classification.

Moreover, the inclusion of the flattening layer contributes significantly to the model's

versatility and adaptability across diverse datasets and applications. By simplifying the

data representation process, the model becomes more proficient at handling varying

input formats and extracting relevant features, thereby enhancing its performance in

real-world scenarios. This architectural refinement reflects a strategic endeavor to

optimize the ResNet50V2 model for enhanced performance and efficacy in tackling

complex computational tasks, ultimately driving advancements in the state-of-the-art

of deep learning-based image analysis and classification. The redesigned architecture

is anticipated to enhance the model's ability to capture and leverage complex data

patterns, resulting in improved performance across tasks such as picture categorization

and pattern recognition. The additional layers depicted in Figure 3.9 contribute to

processing efficiency. Specifically, the flattening layer serves as a conduit, converting

multidimensional arrays into one-dimensional representations, thereby facilitating

seamless data integration into subsequent layers. This transformation optimizes the

network's capacity to extract relevant features from input data, thereby bolstering

overall performance. These modifications are aimed at enhancing the network's ability

to extract pertinent features from input data, ultimately aimed at improving the model's

performance. The overarching objective of these alterations is to empower the model

to effectively analyze and learn intricate patterns within the dataset, thereby enhancing

its ability to make accurate predictions or classifications. This deliberate approach is

intended to refine the model's understanding and representation of complex data

structures, thus enhancing its proficiency across a wide range of image analysis tasks

and contributing to advancements in the field of deep learning-based image processing.

The improved ResNet50V2 model stands as a noteworthy breakthrough in the realm of

deep learning architecture, characterized by a meticulously crafted balance between

complexity and computing efficiency. Through deliberate modifications to its

architecture, researchers aim to not only enhance the model's performance but also

ensure the optimal utilization of computational resources. This iterative refinement

37

process plays a crucial role in empowering the model to effectively capture and leverage

subtle patterns inherent in the data, thereby enhancing its predictive capabilities across

a myriad of applications. Beyond mere performance enhancement, the architectural

enhancements introduced in the ResNet50V2 model are poised to elevate its overall

functionality and versatility. By bolstering the model's capability to handle diverse and

intricate data structures, researchers aspire to expand its applicability across a broad

spectrum of tasks and datasets. This upgrade is geared towards enhancing the model's

adaptability to various tasks and datasets by fine-tuning its design to better

accommodate complex data patterns. The strategic modifications made to the model's

architecture are strategically aimed at augmenting its capacity to discern and leverage

complex data features, thereby improving its performance and versatility across diverse

applications. These adjustments empower the model to thrive in varied settings by

adeptly adapting to the nuances present in different datasets and scenarios. Through the

refinement of both the architecture and training procedures, researchers seek to

optimize the model's efficacy in recognizing intricate patterns within the data. By

meticulously adjusting the architecture and fine-tuning the training procedures,

researchers aim to enhance the model's ability to capture subtle variations and complex

relationships present in the data. These enhancements enable the model to consistently

deliver robust performance across a wide spectrum of tasks and scenarios, ranging from

image classification and object detection to natural language processing and beyond.

The iterative refinement process ensures that the model remains adaptable and capable

of handling the diverse challenges posed by real-world applications, thereby reinforcing

its relevance and impact in various domains.

The enhanced ability to handle complex data features not only ensures dependable

results but also broadens the model's utility and impact across various domains such as

image classification, object detection, and pattern recognition. This underscores the

pivotal role of ongoing research and development endeavors in advancing deep learning

architectures to meet the ever-evolving demands of real-world applications. As

technology continues to evolve and datasets become increasingly diverse and complex,

the need for sophisticated deep learning models capable of effectively handling such

challenges becomes more pronounced. By continuously refining and optimizing deep

learning architectures like ResNet50V2, researchers can stay at the forefront of

innovation, driving progress in fields ranging from healthcare and autonomous driving

38

to natural language processing and beyond. This commitment to advancement ensures

that deep learning continues to push the boundaries of what is possible, enabling

transformative solutions to some of the most pressing challenges facing society today.

 Figure 3.9: Modified ResNet50V2 Architecture

39

Figure 3.10: Modified ResNet50V2 model summary

3.3.5 Model Training

In addition to fine-tuning hyperparameters for accuracy optimization, my efforts to

enhance the model's performance on tomato detection tasks involved rigorous training

on a specialized Tomatoes Dataset. Before training commenced, preprocessing steps

were undertaken to clean the data and eliminate any irrelevant information.

Subsequently, the dataset was divided into distinct training and testing sets to facilitate

the evaluation of the model's performance. During the training phase, the model was

exposed to the training set while employing various techniques such as data

augmentation and regularization to combat overfitting. These strategies played a pivotal

role in enhancing the model's ability to generalize to unseen data and achieve superior

performance in tomato detection tasks. By systematically incorporating these

methodologies, I ensured that the model was not only effectively trained but also fine-

tuned to its maximum potential in accurately identifying and classifying tomatoes

across diverse scenarios. This comprehensive and systematic approach underscores our

commitment to developing a robust and reliable model for tomato detection. By

meticulously adjusting hyperparameters and employing advanced training techniques,

I aimed to optimize the model's performance and bolster its capability to tackle real-

world challenges in agricultural and food processing industries.

40

Two optimizers, Adam and Adamax, were employed to assess their efficacy in training

the updated model. Adamax, an extension of the Adam optimizer, introduces additional

functionality to handle sparse gradients more effectively. The objective of this

comparative analysis was to discern which optimizer yielded superior results for the

updated model. Through meticulous evaluation of their performance, researchers aimed

to pinpoint the optimizer that optimized convergence speed, stability, and overall

efficacy in adjusting the model's parameters. This comparative research furnished

valuable insights into the relative strengths and limitations of each optimizer,

facilitating the selection of the optimal optimization strategy to enhance the model's

performance in tomato detection tasks. By systematically comparing the performance

of Adam and Adamax, researchers could make informed decisions regarding the choice

of optimizer, thereby refining the training process to maximize the model's accuracy

and efficiency.

The training input size of 224×224 pixels was selected to ensure the model could

capture adequate details and features from the images. A batch size of 32 was utilized

to strike a balance between computational efficiency and model convergence during

training. This configuration enabled efficient processing of data in batches, facilitating

effective parameter updates while minimizing computational overhead. These

considerations are crucial for achieving high-performance results while effectively

managing computational resources in training deep learning models.

3.3.6 Model Testing

In the evaluation phase, the model's performance is rigorously tested on tomato imagery

from the dataset. Initially, a random sample test image is selected, and the model

generates a prediction based on its learned parameters. These predictions are then

validated against existing datasets to ensure accuracy and reliability. Subsequently, the

model's performance is assessed on hypothetical data by computing metrics such as

accuracy, recall, and F1 score. These metrics provide valuable insights into the model's

ability to correctly classify tomatoes across various conditions and scenarios. Further

evaluation is conducted on unseen Kaggle datasets to gauge the model's generalization

ability and its effectiveness in recognizing tomatoes in diverse photographs. A precision

vs. recall curve is plotted to assess the accuracy of the categorization process, offering

a comprehensive view of the model's performance. To refine and improve the model,

41

adjustments to hyperparameters such as learning rate and number of epochs are made.

The model's performance is continuously monitored, and modifications are

implemented as necessary based on its confidence levels and overall efficacy. Finally,

the model's performance is evaluated using assessment metrics such as accuracy or

precision, providing a comprehensive understanding of its effectiveness in tomato

detection tasks. Comparative analysis with other models further validates the model's

efficacy and highlights areas for improvement, ultimately guiding future iterations and

advancements in deep learning-based image analysis.

3.4 Summary

The ResNet50V2, a deep convolutional neural network (CNN), is renowned for its pre-

trained layers that possess a comprehensive understanding of image characteristics such

as shape, color, and structure. One of the main factors contributing to the ResNet50V2's

outstanding image analysis performance is its extraordinary depth. This depth enables

the model to delve deeply into the minute features included in pictures, revealing

minute differences and nuances that could otherwise go missed. Consequently, the

model displays an increased susceptibility to the many attributes seen in various kinds

of images and environments. From a practical standpoint, this depth means that images

of any complexity or diversity can be uniquely analyzed to extract useful features. The

amazing precision with which the ResNet50V2 captures the core of visual input is

demonstrated in its ability to distinguish fine textures, subtle color gradients, and

complicated patterns. When working with different datasets that include a wide range

of image types—from natural scenes to industrial surroundings, and everything in

between—this functionality is especially helpful. Furthermore, because of its depth, the

model can learn hierarchical feature representations, in which more complex ideas are

constructed from simpler primitives. This hierarchical method improves the model's

resilience and adaptability while also improving its comprehension of images. The

ResNet50V2 gains proficiency in processing a wide range of picture data by learning

to identify both simple and complex visual components. This ensures dependable

performance in a variety of real-world applications. Fundamentally, the ResNet50V2's

depth is a key component in its capacity to efficiently traverse the complex and varied

terrain of visual data, which makes it an excellent tool for image analysis jobs in

domains like computer vision, medical imaging, and more. Thanks to its extensive

42

training on a vast repository of images, the ResNet50V2 demonstrates remarkable

adaptability and generalization capabilities when presented with new datasets.

Moreover, it exhibits robustness and versatility in effectively managing a wide range

of image features, highlighting its prowess in complex image analysis tasks.

3.5 Methodology (For Testing)

For the sake of testing, this is our operational procedure.

Working Flowchart for Testing

3.5.1 Initial Data Gathering

 Start by collecting primary data from relevant sources. Ensure the collected data covers

the necessary aspects of your project and is of good quality. Organize the data in a

structured format for further analysis.

3.5.2 Data Preparation

Clean and preprocess the collected data by addressing any missing values, outliers, or

inconsistencies. Standardize or normalize the data to ensure consistency across different

features. Convert categorical data into numerical formats if required. Split the

preprocessed data into testing sets for model development and evaluation.

3.5.3 Creation of Testing Set

Allocate a portion of the preprocessed data specifically for testing purposes.

43

This segregated dataset will be used to assess the model's performance independently.

3.5.4 Model Evaluation

Choose an appropriate machine learning algorithm based on your problem's nature and

data characteristics. Train the selected model using the training dataset. Fine-tune

model parameters to optimize its performance. Evaluate the model's effectiveness using

various metrics such as accuracy, precision, recall, or mean squared error. Utilize

techniques like cross-validation to validate the model's generalization capabilities.

3.5.5 Analysis of Expected Results

Analyze the performance of the trained model and derive insights from the obtained

results. Identify areas for potential enhancement based on the model's performance

metrics. Adjust the model architecture or data preprocessing methods as needed. Iterate

through the process as required until the desired level of performance is achieved.

Anticipate deploying the trained model for making predictions on new, unseen data.

44

CHAPTER 4

Results and Discussion

4.1 Introduction

The full experimental assessment of the model being offered is based on tomato and its

category Prediction for diverse images monitoring using modified model described in

this chapter.

4.2 Performance parameters

A numerical declaration of the representational work and its outcomes might serve as a

performance measure. Measures of performance are sponsored data that show clearly

if representation or action is accomplishing its objectives and whether policy or

organizational goals are being promoted. I used an assessment matrix consisting of

precision, recall, F1-score, true negative rate, and false-positive rate accuracy to

determine how well my proposed model performed. In classification evaluation,

precision and recall are important measures that evaluate how well a model identifies

affirmative class instances. Recall assesses the fraction of true positives that are

correctly detected, whereas precision counts the percentage of correctly classified

positives. Both metrics provide information about how well a model performs in

classification tasks. The precision of positive predictions is highlighted by measuring

the percentage of accurately predicted positive cases among all positive instances that

are labeled as such. Conversely, recall measures the percentage of accurately predicted

positive occurrences among all true positive instances in the dataset, emphasizing the

model's capacity to include all positive examples. The tradeoff between precisely

recognizing positive examples (precision) and thoroughly capturing all positive

instances (recall) is balanced by these measurements, which offer complementary

insights into the model's performance. Assessing accuracy and recall facilitates the

assessment of the model's efficacy in accurately classifying positive events and

provides guidance for optimization tactics to improve its performance. Recall,

calculated as the ratio of true positives (TP) to the sum of true positives and false

negatives (FN), quantifies the model's sensitivity to positive instances.

Recall = TP / (TP + FN) …………………………………………………………..(4.1)

 45

Precision, on the other hand, is computed as the ratio of true positives to the sum of true

positives and false positives (FP), characterizing the accuracy of positive predictions.

Precision=TP / (TP + FP)………………………………………………………….(4.2)

The F1-score, representing the weighted average of precision and recall, encapsulates

both false positives and false negatives in its estimation. Mathematically, the F1-score

is expressed as

F1 = 2 * (Recall * Precision) / (Recall + Precision) ………………………...…….(4.3)

True Negative Rate (TNR), denoting the proportion of samples correctly identified as

negative among those tested negative, is computed as TNR = TN / (FP + TN).

Conversely, False Positive Rate (FPR), an accuracy metric applicable to specific

machine learning models, is calculated as

F1 = FP / (FP + TN)………………………………………………..……………...(4.4)

Accuracy, as an overall measure of correctly classified samples, is determined by the

ratio of the sum of true positives and true negatives to the total number of samples.

Accuracy = (TP + TN) / (TP + TN + FP + FN)……………...…………………….(4.5)

 In comparison to the classification matrix, True Positive (TP), False Positive (FP), True

Negative (TN), and False Negative (FN) represent the counts of properly and

erroneously categorized cases. These metrics are crucial for evaluating the model's

performance. True Positive indicates successfully recognized positive instances; False

Positive indicates negative instances misclassified as positive; True Negative indicates

correctly identified negative instances; and False Negative implies positive instances

incorrectly classified as negative. By analyzing these quantities, researchers gain

insights into the model's accuracy, precision, recall, and other performance metrics,

allowing for a thorough evaluation of its effectiveness in correctly classifying instances

and informing potential improvements to improve its predictive capabilities.

4.3 Experimental Analysis

The modified CNN architecture, initialized with pre-trained ImageNet weights for

classification, underwent rigorous evaluation on the Tomato Dataset. This assessment

aimed to gauge the model's performance in accurately identifying tomatoes, crucial for

 46

agricultural applications and optimizing yield. The evaluation process for the modified

CNN included robust validation set support, where the model's performance was

thoroughly assessed using classification accuracy metrics and a confusion matrix. This

comprehensive analysis enabled a detailed understanding of the model's ability to

accurately classify tomatoes and provided insights into potential areas for improvement,

ensuring its effectiveness for agricultural applications and yield optimization. The

evaluation formed the foundation for comparing and analyzing the results against

architectures presented in existing literature, indicating a systematic approach to

benchmarking the performance of the proposed methodology against established

methods documented in prior research.

TABLE4.1: THE HYPER PARAMETER AND PARAMETER FOR OUR MODEL

In the experimental analysis, two optimization techniques, Adam and Adamax, were

employed with a shared learning rate of 0.001 and a consistent batch size of 32. The

model's performance was evaluated using both optimizers, with Adamax serving as an

alternative. Notably, both optimization strategies exhibited improved accuracy after 25

epochs of training. This suggests that the model benefited from the optimization

techniques implemented, regardless of the specific algorithm utilized. The choice to

include Adamax as an alternative optimizer indicates a thorough exploration of

optimization methods to identify the most effective strategy for the given task. The

consistent learning rate and batch size across experiments ensure a fair comparison

between optimization techniques. The observed enhancement in accuracy ensure

underscores the effectiveness of the optimization process in refining the model's

performance, contributing valuable insights into the impact of optimization algorithms

on the overall efficacy of the deep learning model. All experiments employed

Hyper parameter Parameter value

Number of Epoch 25

Batch Size 32

Optimizer Adam,Adamx

Learning rate 0.001

Objective function Sparse Categorical Crossentropy

Hidden layer ReLu

Output layer Softmax

 47

optimizers with adaptive learning rates and utilized the sparse cross-entropy function

as the loss as function. This approach ensures efficient optimization by adjusting

learning rates dynamically. The sparse cross-entropy loss function is suitable for

scenarios with sparse target labels, making it ideal for classification tasks with many

classes. The meticulous optimization and evaluation process are essential for refining

the performance of the convolutional neural network (CNN) model to effectively detect

tomatoes in the provided dataset. Through rigorous experimentation with various

parameters, such as optimizers with adaptive learning rates and the sparse cross-entropy

loss function, the model's accuracy and generalization capabilities can be enhanced.

The Convolutional Neural Network (CNN) model is refined iteratively until it achieves

optimal performance in precisely identifying tomatoes, which is important for

agricultural applications and yield optimization. These iterative improvements entail

ongoing modifications and improvements to the training protocols, data preprocessing

methods, and model architecture. Through iteratively fine-tuning the model parameters

and optimizing its performance measures, the CNN learns to accurately detect tomatoes

in farming environments. To maximize crop yields, farmers must be able to manage

their produce effectively and make well-informed decisions. This leads to increased

agricultural production and profitability.

4.3.1 Performance Analysis of Adam optimizer

By looking at the Figure 4.1 training plot, I can observe that the validation loss tracks

its training loss, suggesting that the dataset itself does have less overfitting:

Figure 4.1: Accuracy and Loss curve in Adam Optimizer in 25 epoch

 48

Figur4.2: Confusion matrix of Adam Optimizer for our model

Figure 4.3: Classification Report of Adam Optimizer for our model

As the number of epochs rose, it is clear from the Figure 4.3 confusion matrix and

Figure 4.6 classification report that the precision, f1-score, recall, support, and accuracy

all increased. On my 3345 data for four classes, I also employed 25 epochs of the Adam

 49

optimizer in this respect and achieved 95.36% testing accuracy. Adam performed

marginally better when dealing with my model, which has a learning rate of 0.001.

4.3.2 Performance Analysis of Adamax optimizer

This Following figure 4.4 shows how training accuracy rises and training loss declines

as the frequency of epochs rises.

Fgure 4.4: Accuracy and Loss curve in Adamax Optimizer in 25 epoch

Using Adamax optimizer, I trained for a total of 25 epochs, and my test results showed

that the training and validation sets had an accuracy of 95.36% and the testing set had

an accuracy of about 95%. Our model's performance is seen in the following Figure 4.5

confusion metric and Figure 4.6 classification report.

Figur4.5: Confusion matrix of Adamax Optimizer for our model

 50

 Figure 4.6: Classification Report in Adamax Optimizer in our model

4.4 Experimental Analysis Existing model in our dataset

The experimental examination of an existing model inside our dataset included careful

evaluation and comparison to predetermined performance indicators. The results were

most likely presented in a structured table format, which allowed for a clear depiction

of the model's performance across multiple tests and conditions. The rigorous

evaluation of these results revealed insights into the model's efficacy, strengths, and

opportunities for improvement. This study most certainly influenced later decisions on

model refinement, optimization tactics, and prospective enhancements, adding to the

iterative process of model development and validation within the context of the dataset

and research objectives.

Table4.2: THE HYPER PARAMETR AND PARAMETR FOR EXISTING MODEL

Hyper parameter Parameter value

Number of Epoch 25

Batch Size 32

Optimizer Adam, Adam , Adamx

Learning rate 0.0001,0.001,0.001

Objective function Sparse Categorical Crossentropy

Hidden layer ReLu

Output layer Softmax

 51

According to [96],I trained their model with an adaptive 0.0001 learning rate for Adam.

Then I demonstrated the both Adam and Adamax optimization, when 0.001 learning

rate was used, and the batch size was set to 32 with 25 epochs. I did it because our

model learning rate was 0.001for both of them. The optimization process was

particularly focused on models utilizing adaptive learning rates with sparse cross-

entropy as the chosen loss function. The use of adaptive learning rates is notable for

dynamically modifying during training, resulting in optimal convergence for a variety

of input patterns. This dynamic modification improves the model's ability to respond to

various complexities in the data, hence increasing training efficiency. Meanwhile, the

loss function used is sparse cross-entropy, which is geared to scenarios with integer

target values and meets the study's special needs. Sparse cross-entropy is an effective

measure of the disparity between predicted and true labels, making it ideal for

classification jobs with many classes. Together, these strategies add to the model's

robustness, allowing for effective learning and accurate predictions in settings with a

variety of data patterns and integer target values. To ascertain their effect on the model's

performance and training, the study carefully examined the Adam and Adamax

optimization methods in a number of scenarios. Researchers sought to determine the

relative effects of different optimization techniques on training stability, convergence

speed, and overall performance by methodically comparing them. Popular adaptive

learning rate algorithms Adam and Adamax take different ways to calculate the changes

to the learning rates. The overarching goal of the investigation was to identify the

observable benefits and drawbacks associated with each optimization method within

the context of the scenarios explored, employing thorough testing and assessment. The

comparative study provided meaningful insights into the most suitable optimization

strategy to select based on the task parameters and the characteristics of the dataset

under,scrutiny.

The central objective of the study was to determine the discernible advantages and

disadvantages of each optimization approach within the confines of the situations

considered, utilizing meticulous testing and evaluation. The comparative analysis

yielded substantial insights into the preferred optimization strategy to pursue,

contingent upon the specifications of the task and the attributes of the dataset examined.

The comparative research yielded significant insights into the best optimization strategy

to choose depending on the task specifications and dataset attributes.

 52

4.4.1 Performance Analysis of Adam optimizer in existing model

This Following figure 4.7 graph shows that as the quantity of epochs grows, loss drops

and accuracy rises.

 Figure 4.7: Accuracy & loss curve in Adam Optimizer for existing model

Figure 4.8: Confusion Matrix of Adam optimizer on existing model

 53

Figure 4.9: Classification Report of Adam optimizer on existing model

4.4.2 Performance Analysis of Adam optimizer in existing model

This Following figure 4.10 graph shows that as the quantity of epochs grows, loss drops,

and accuracy rises.

Figure 4.10: Accuracy & loss curve when Adam Optimizer for existing model with 0.001 learning rate

 54

Figure 4.11: Confusion Matrix in Adam optimizer existing model with 0.001 learning rate

 Figure 4.12: Classification Report in Adam Optimizer for existing model with 0.001 learning rate

 55

4.4.3 Performance Analysis of Adamax optimizer in existing model

This following figure 4.13 graph shows that as the quantity of epochs grows, loss drops

and accuracy rises.

Figure 4.13: Accuracy & loss curve when Adamax Optimizer for existing model with 0.001 learning

rate

Figure 4.14: Confusion Matrix of Adamax Optimizer for existing model with 0.001 learning rate

 56

Figure 4.15: Classification Report of Adamax Optimizer for existing model with 0.001 learning rate

4.5 Predicted sample

Figures 4.13–4.16 show the predicted picture visualizations produced by my model.

These graphic representations demonstrate the model's ability to reliably identify and

forecast outcomes for each label. These figures, which visually demonstrate the model's

performance, provide vital insights into its ability to correctly recognize and categorize

different classes. Visualizations play a crucial role in aiding researchers and

stakeholders in understanding the capabilities and limitations of a model, thereby

enhancing comprehension of its predictions, and facilitating potential modifications or

optimizations. By providing clear and intuitive representations of the data and the

model's behavior, visualizations offer insights into how the model processes

information and makes predictions. This transparency fosters trust in the model's

capabilities, as stakeholders can directly observe its performance and understand the

factors influencing its predictions. Furthermore, visualizations enable the identification

of potential areas for improvement, guiding the development of more accurate and

reliable models. Overall, visualizations serve as an effective tool for evaluating model

performance, increasing understanding among stakeholders, and enhancing confidence

in the model's prediction capabilities. Through visual representations, researchers and

stakeholders can collaborate more effectively to refine models and ensure their

suitability for various applications.

 57

Figure 4.16: Predicted outcomes for Damaged Class

Figure 4.17: Predicted outcomes for Old Class

 58

Figure 4.18: Predicted outcomes for Ripe Class

Figure 4.19: Predicted outcomes for Unripe Class

4.6 Result Analysis of existing model

This part describes how well my model performed using Adam, Adamax, Each

optimizer's performance was thoroughly compared to determine its effectiveness. This

 59

comparison analysis seeks to determine and comprehend the relative strengths and

limitations of each optimizer in the context of the given task or model. A comparison

table visually presents the performance of the model and evaluates the effectiveness of

each optimizer, simplifying the assessment process based on performance criteria. This

table likely includes metrics such as accuracy, precision, recall, and F1 score for each

optimizer, allowing for a comprehensive comparison of their performance across

various evaluation metrics. The comparison table showcases the performance of the

two optimizers, Adam and Adamax, within our model. By visually summarizing the

results in a structured format, stakeholders can easily compare the effectiveness of

different optimizers and make informed decisions regarding their selection based on the

desired performance criteria and objectives. In my model

Table 4.3: COMPARISON TABLE OF ABOVE TWO OPTIMIZERS IN OUR MODEL:

Optimizer

Learning

Rate

Epoch

Training

Accuracy

Training

Loss

Validation

Accuracy

Validation

Loss

Adam 0.001 25 0.9928 0.0222 0.9536 0.2965

Adamax 0.001 25 0.9880 0.0700 0.9536 0.3546

I examined these optimizers using my dataset in an existing model to see how they

affected accuracy and loss. Where the Adam optimizer was run twice at progressively

higher learning rates of 0.0001 and 0.001, as well as a study of adamax with a learning

rate of 0.001. It was evident from the comparison table that Adam and Adamax scored

90.16%, 90.86%, and 92.16%.

Table 4.4: COMPARISON TABLE OF ABOVE THREE OPTIMIZERS

Optimizer

Learning

Rate

Epoch

Training

Accuracy

Training

Loss

Validation

Accuracy

Validation

Loss

Adam 0.0001 25 0.9726 0.0865 0.9042 0.2579

Adam 0.001 25 0.9870 0.0318 0.9086 0.2552

Adamax 0.001 25 0.9914 0.0308 0.9216 0.2366

 60

 4.7 Comparison ADAM With existence work

I compared our model with the existing paper [35] with our collected Tomatoes Dataset.

I examined their model carefully. I also tested both Adam and Adamax optimizers on

their model with 0.001 learning rate where their learning rate was 0.0001. My proposed

model gave better accuracy than them, I used Adam optimizer for comparison. The

Comparison accuracies in the optimizer- Adam respectively 95.36%, 90.42%, 90.86%.

Figure 4.20: Comparison of validation accuracies of 3 adam optimizers with our model & their

proposed system.

4.8 Discussions

I made a comparatively wide dataset and built a model, which I modified from

ResNet%0V2. I utilized existing models to test the validity of our model with every

optimizer employed in this research. The results from which we got the better than their

model gave on my dataset. With these promising results, I am confident that my model

can be applied to other datasets of tomato dataset and, hopefully, will lead to improved

accuracy and performance.

4.9 Summary

In this chapter, I have gone over the dataset and experimental settings, as well as the

environment I utilized to apply my suggested models into practice. In my experiments,

ResNet50V2's depth improves picture analysis. Shows robust performance across

varied datasets. Fine-tuned hyperparameters improve accuracy. Comparative study

evaluates efficacy and informs further developments.

 61

4.10 Performance Analysis of Adam optimizer in our model

This Following figure 4.21 graph shows that as the quantity of epochs grows, loss drops,

and accuracy rises.

Figure 4.21: Accuracy and Loss curve in Adam Optimizer in 25 epoch

Figure 4.22: Confusion matrix of Adam Optimizer for our model

A confusion matrix is a tool used to visualize the performance of a classification model,

where the model's predictions are compared against the actual labels. From the

information provided, it appears that as the number of epochs increased, the model's

performance improved, as evidenced by the confusion matrix (Figure 4.22) showing

better results. The Adam optimizer, a popular optimization algorithm commonly used

in training neural networks, contributed to achieving a testing accuracy of 68.00%.

complexity of the task and the quality of the dataset.

 62

4.11 Result Analysis of model

Adam performed marginally better when dealing with my model, which has a learning

rate of 0.001.

Table 4.5: COMPARISON TABLE OF ABOVE ONE OPTIMIZERS IN OUR MODEL

4.12 Predicted Sample

Examine an image of tomatoes.ResNet50V2 predicts with 68% accuracy that the image

contains tomatoes. Here’s an illustration of a predicted sample.

Figure 4.23: Present a visual representation demonstrating the examination of predicted tomato images.

Optimizer Learning

Rate

Epoch Validation

Accuracy

Secondary

Validation

Loss

Secondary

Validation

Accuracy

Primary

Validation

Loss

Primary

Adam 0.001 25 0.9536 0.2965 0.6835 0.3165

 63

4.13 Primary Data Outcomes

Firstly, I collected primary data(raw data) for testing purpose. My model was able to

predict the primary data. I separated into four classes ripe, unripe, damage, old. I

collected 49 photos, and our accuracy is 68%.Due to time constraints, I couldn't gather

enough old data, impacting accuracy. I plan to address this by working with larger

datasets in the future. To compensate for the lack of data, we supplemented with data

from Kaggle to complete the thesis.

64

CAPTER 5

Conclusion and Future Works

5.1 Conclusion

In this paper we have proposed a new modified CNN model ResNet50V2 and collected

images for tomato condition detection. When tomato images were used to predict

tomato quality like Damaged, old, ripe and unripe, the findings were better and

accurate. I have gathered image data from google images and different organization

dataset images. Overall, the research reveals that suggested CNN model could be

employed for disaster detection and it can predict disasters from images.

5.2 Contribution of this Thesis

The researcher introduced a fresh dataset in this thesis, making major contributions to

the field of tomato detection. This dataset is the outcome of combining existing datasets

to provide a more diversified and thorough training set for the neural network. The goal

of this project is to improve the effectiveness of tomato identification systems by giving

a more diverse and representative set of samples for the model to learn from. Secondly,

the ResNet50V2 model is modified to specifically tackle challenges related to tomato

characteristics. The specific changes made to the ResNet50V2 model greatly improve

its accuracy in tomato detection in a variety of scenarios. The effect of adding a

flattening layer to the neural network on processing one-dimensional arrays is

particularly noteworthy. This well-thought-out inclusion simplifies data representation,

enabling learning and optimization that is more efficient. Through particular

architecture adaptation to tomato properties, the modified model demonstrates its

effectiveness in enhancing tomato detection performance in a variety of settings.

The combined effect of these contributions yields a more robust and adaptable tomato

detection method. The improved model can adjust to changing tomato characteristics

and environmental conditions, making it useful for precision agriculture applications.

The implications extend beyond yield optimization, where precise and flexible tomato

detection might be critical for successful crop management. Overall, this study bridges

the gap between dataset diversity and model modification by providing practical

answers to real-world agricultural difficulties.

 65

5.3 Future works

Some areas of the current research can be examined and improved. The following

recommendations are made based on the literature reviews and studies undertaken in

this thesis.

This thesis opens avenues for future research, including the exploration of transfer

learning techniques and the integration of real-time data augmentation strategies to

further improve model generalization. Additionally, collaborative efforts to create and

share annotated datasets specific to tomato detection can contribute to advancing the

field. In the future, a new classifier with a different optimizer can be introduced for

improved accuracy and outcomes. In addition, video recognition will be the primary

focus of future study. Besides detecting natural disasters will do image segmentation.

In conclusion, this thesis presents a holistic approach to advancing tomato detection

through dataset fusion and modifications to the ResNet50V2 model. The results

showcase the potential for enhanced accuracy in tomato detection, contributing to the

broader goal of optimizing agricultural practices through technology-driven solutions.

66

References

[1] G. Zampokas and I. Mariolis, ""Residual Cascade CNN for Detection of Spatially

Relevant Objects in Agriculture: The Grape-Stem Paradigm.," International

Conference on Computer Vision Systems. Cham: Springer Nature Switzerland,

pp. 159-168, 2023.

[2] S. Hassan and A. Maji , "Identification of plant-leaf diseases using CNN and

transfer-learning approach," Electronics 10, vol. 12, p. 1388, 2021.

[3] "Fruit Detection for Classification by Type with YNOv3-Based CNN

Algorithm."," Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 4,

no. 3, pp. 476-481., 2020.

[4] L. Boukhris and . J. Abderrazak, "Tailored deep learning based architecture for

smart agriculture," 2020 International Wireless Communications and Mobile

Computing (IWCMC). IEEE, pp. 964-969, 2020.

[5] Alam, Mohammed Jaber, Abdul Gafur, Syed Zahidur Rashid, Md Golam

Sadeque, Diponkor Kundu, and Rosni Syed. "Permutation based load balancing

technique for long term evolution advanced heterogeneous

networks." International Journal of Electrical and Computer Engineering 12, no.

6 (2022): 6311.

[6] Rashid, Syed Zahidur, Abdul Gafur, Aasim Ullah, Md Akbar Hossain, Sultan

Shah Mamun, and Md Qudrat-E-Alahi Majumder. "Maximum Power Design and

Simulation for a Low Return Loss Wearable Microstrip Patch Antenna."

In Towards a Wireless Connected World: Achievements and New Technologies,

pp. 161-175. Cham: Springer International Publishing, 2022.

[7] Soumen, Abu Zafar Md Imran, Md Emdadul Hoque Bhuiyan, Subrata Barua,

Syed Zahidur Rashid, Abdul Gafur, and Md Razu Ahmed. "Highly efficient

microstrip patch antenna for wireless gigabit alliance applications." Indonesian

Journal of Electrical Engineering and Computer Science 26, no. 3 (2022): 1451-

1459.

[8] "https://www.dataversity.com,"[Online].Available:https://www.dataversity.net/b

riefhistorydeeplearning/#:~:text=The%20history%20of%20deep%20learning,to

%20mimic%20the%20thought%20process..

 67

[9] Chowdhury, Mehedi Hasan, Radowanul Haque, Fahad Uddin, Syed Zahidur

Rashid, Md Mohiuddin Soliman, and Abdul Gafur. "A Simple UWB Antenna with

WiMAX/WLAN/X Triple Band Rejection Features." In 2022 International

Conference on Innovations in Science, Engineering and Technology (ICISET),

pp. 56-60. IEEE, 2022.

[10] Islam, Md Tohedul, Abu Zafar Md Imran, Fahim Chowdhury, Md Nur Nobe

Hridoy, Md Humayun Kabir, Abdul Gafur, and Syed Zahidur Rashid. "Design and

Analysis of Multiband Microstrip Patch Antenna Array for 5G Communications."

In 2022 International Conference on Innovations in Science, Engineering and

Technology (ICISET), pp. 29-32. IEEE, 2022.

[11] "https://medium.com,"[Online].Available:https://medium.com/@sreyan806/histo

ry-of-deep-learning-c176e2d3cddf.

[12] L. Xie and . A. ,Yuille, "Genetic cnn," Proceedings of the IEEE international

conference on computer vision, pp. 1379-1388, 2017.

[13] Hossain, Tanvir, Masud Parvez, Abu Zafar Md Imran, Mohammed Jashim Uddin,

Abdul Gafur, and Syed Zahidur Rashid. "TeraHertz Antenna for Biomedical

Application." In 2022 International Conference on Innovations in Science,

Engineering and Technology (ICISET), pp. 42-45. IEEE, 2022.

[14] Samad, Md Abdus, Md Razu Ahmed, and Syed Zahidur Rashid. "An overview of

rain attenuation research in Bangladesh." Indonesian Journal of Electrical

Engineering and Computer Science 23, no. 2 (2021): 902-909.

[15] D. Bhatt, and C. Patel, , "CNN variants for computer vision: History, architecture,

application, challenges and future scope," Electronics 10, vol. 20, p. 2470, 2021.

[16] Syed Zahidur Rashid. “Performance Analysis of DWDM Based Advanced Optical

Network System for Different Optical Amplifiers and Channel Configurations.”

Daffodil International University (DIU), 2021

[17] "towardsdatascience,"[Online].Available:https://towardsdatascience.com/convol

utional-neural-networks-explained-9cc5188c4939.

[18] "encord,"[Online].Available:https://encord.com/glossary/pre-trained-model

definition/#:~:text=A%20pre%2Dtrained%20model%20is,tuned%20for%20a%2

0specific%20task.

 68

[19] "nvida," [Online]. Available: https://blogs.nvidia.com/blog/what-is-a-pretrained-

aimodel/#:~:text=A%20pretrained%20AI%20model%20is,8%2C%202022%20b

y%20Angie%20Lee.

[20] Billah, Mohammad Masum, Niaz Ahmed Khan, Mohammad Woli Ullah, Faisal

Shahriar, Syed Zahidur Rashid, and Md Razu Ahmed. "Developing a secured and

reliable vehicular communication system and its performance evaluation."

In 2020 IEEE Region 10 Symposium (TENSYMP), pp. 60-65. IEEE, 2020.

[21] Gafur, Abdul, M. S. Islam, and Syed Zahidur Rashid. "Comparison of coherent

optical transmission systems performance by DP-QAM levels." International

Journal of Electrical and Computer Engineering 10, no. 3 (2020): 2513.

[22] "wikipedia,"[Online].Available:https://en.wikipedia.org/wiki/Residual_neural_n

etwork.

[23] Huque, Saad Mazhurul, Imam Muhammad Amirul Maula, and Syed Zahidur

Rashid. "An Advanced Distribution Layer Solution to Improve Bandwidth

Utilization and Media Quality for Multi-Access Network Management in Wide

Area Network." In 2019 International Conference on Computer, Communication,

Chemical, Materials and Electronic Engineering (IC4ME2), pp. 1-4. IEEE, 2019.

[24] "paperswithcode,"[Online].Available:https://paperswithcode.com/method/incepti

onresnetv2#:~:text=Inception%2DResNet%2Dv2%20is%20a,of%20Residual%2

0Connections%20on%20Learning.

[25] Rashid, Syed Zahidur, Abdul Gafur, Atikur Rahaman, Yaheya Solaiman, and

Erfanul Hoque Bahadur. "Traffic Load Based Efficient Energy Management

Technique for 5G Small Cell Network." In 2019 1st International Conference on

Advances in Science, Engineering and Robotics Technology (ICASERT), pp. 1-

5. IEEE, 2019.

[26] Faisal, Mohammad, Abdul Gafur, Syed Zahidur Rashid, Md OmarFaruk Shawon,

Kazi Ishtiak Hasan, and Md Bakey Billah. "Return loss and gain improvement for

5g wireless communication based on single band microstrip square patch

antenna." In 2019 1st International Conference on Advances in Science,

Engineering and Robotics Technology (ICASERT), pp. 1-5. IEEE.

[27] "stackoverflow,"[Online].Available:https://stackoverflow.com/questions/622289

81/what-is-freezing-unfreezing-a-layer-in-neural-networks.

 69

[28] ".educative.io," [Online]. Available: https://www.educative.io/answers/what-is-a-

neural-network-flatten-layer.

[29]

"simplilearn,"[Online].Available:https://www.simplilearn.com/tutorials/deeplear

ningtutorial/convolutionalneuralnetwork#:~:text=Flattening%20is%20used%20t

o%20convert,layer%20to%20classify%20the%20image..

[30]

"Medium," [Online]. Available: https://towardsdatascience.com/introduction-to-

convolutional-neural-network-cnnde73f69c5b83#:~:text=Dense%20Layer%20is

%20simple%20layer,on%20output%20from%20convolutional%20layers..

[31]

"Kaggle,"[Online].Available:https://www.kaggle.com/code/dansbecker/rectified-

linear-units-relu-in-deep-learning/notebook.

[32]

"builtin,"[Online].Available:https://builtin.com/machine-learning/reluactivation-

function.

[33]

"Dotnettutorial," [Online]. Available: https://dotnettutorials.net/lesson/dropout-

layer-in-cnn/.

[34]

"enjoyalgorithms,"[Online].Available:https://www.enjoyalgorithms.com/blog/ho

w-to-choose-activation-function-for-output-layer.

[35]

"enthought,"[Online].Available:https://www.enthought.com/blog/neuralnetwork-

output-layer/.

[36]

Kabir, Md Humayun, Syed Zahidur Rashid, Abdul Gafur, Muhammad Nurul

Islam, and MD Jiabul Hoque. "Maximum energy efficiency of three precoding

methods for massive MIMO technique in wireless communication system."

In 2019 International Conference on Electrical, Computer and Communication

Engineering (ECCE), pp. 1-5. IEEE, 2019.

[37]

"d2l.ai,"[Online].Available:https://d2l.ai/chapter_computer-vision/finetuning

.html.

[38]

Sabbir, Md Maruful Hasan, Md Toukidul Islam, Syed Zahidur Rashid, Abdul

Gafur, and Md Humayun Kabir. "An Approach to Performance and Qualitative

Analysis of Routing Protocols on IPv6." In 2019 International Conference on

Electrical, Computer and Communication Engineering (ECCE), pp. 1-6. IEEE,

2019.

 70

[39]

N. G. Raju, A. Therala, V. Yalla, R. R. Ch and K. Rajiv, "Natural Disaster

Discernment and Vigilance," in E3S Web of Conferences, 2021.

[40]

Mutha, Sahil Amol, Akshat Mayur Shah, and Mohammed Zakee Ahmed.

"Maturity detection of tomatoes using deep learning." SN Computer Science 2

(2021): 1-7.

[41]

Quach, Luyl-Da, KHANG NGUYEN Quoc, Anh Nguyen Quynh, Nguyen Thai-

Nghe, and Tri Gia Nguyen. "Explainable deep learning models with gradient-

weighted class activation mapping for smart agriculture." IEEE Access 11, no.

August (2023): 83752-83762.

[42]

G. Ciocca , and P. Napoletano, "CNN-based features for retrieval and

classification of food images.," Computer Vision and Image Understanding, vol.

176, pp. 70-77, 2018

[43]

Gafur, Abdul, M. S. Islam, and Syed Zahidur Rashid. "Quality Optimization

Based Trend Line for Hybrid Optical Amplifier Configurations in DWDM

Transmission Systems." International Journal of Microwave & Optical

Technology 14, no. 5 (2019).

[44]

He,K.,Zhang,X.,Ren,S.,&Sun,J.(2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision & pattern

recognition (pp. 770-778).

[45]

MW Ullah, MA Rahman, F Shahriar, ZU Ahmed, MMA Faisal, MJ Uddin and

Syed Zahidur Rashid. "Enlightenment of Saint Martin Island: Underwater

Submarine Cable and its Reliability." International Conference on Computer and

Information Technology (ICCIT), 2018

[46]

Kamrul, MD Imtiaz, AZ M. Imran, Abdul Gafur, and Syed Zahidur Rashid. "Rain

Attenuation Estimation of Vertical and Horizontal Polarizations for

Bangabandhu-1 Satellite." In 2018 International Conference on Advancement in

Electrical and Electronic Engineering (ICAEEE), pp. 1-3. IEEE, 2018.

[47]

Y. Lee and Y. Kim , "Comparison of CNN and YOLO for Object Detection,"

Journal of the semiconductor & display technology, vol. 19, no. 1, pp. 85-92,

2019.

 71

[48]

R. Girshick , "Fast r-cnn," Proceedings of the IEEE international conference on

computer vision, 2015.

[49]

Huque, Saad Mazhurul, Imam Muhammad Amirul Maula, Razu Ahmed, Syed

Zahidur Rashid, and Abdul Gafur. "An Adaptive Routing Protocol for the

Performance of Real-Time Applications." In 2018 International Conference on

Innovations in Science, Engineering and Technology (ICISET), pp. 284-289.

IEEE, 2018.

[50]

J. Wang, and L. Chen, "CNN transfer learning for automatic image-based

classification of crop disease," mage and Graphics Technologies and

Applications: 13th Conference on Image and Graphics Technologies and

Applications, IGTA 2018, Beijing, Chin, vol. 13, pp. 319-329, 2018.

[51]

Y. Zhang and Z. Zhao , "Construction of green tea recognition model based on

ResNet convolutional neural networ," Journal of Tea Science, pp. 261-271, 2022.

[52]

Alam, Towhidul, Chowdhury Mohammad Masum Refat, Abu Zafar Md Imran,

Syed Zahidur Rashid, Md Humayun Kabir, Rabiul Hasan Tarek, and Abdul Gafur.

"Design and implementation of a secured enterprise network using dynamic

multipoint VPN with HSRP protocol." In 2018 International conference on

innovations in science, engineering and technology (ICISET), pp. 367-371. IEEE,

2018.

[53]

M. Razavi and S. Mavaddati, "ResNet deep models and transfer learning

technique for classification and quality detection of rice cultivars," Expert Systems

with Applications, vol. 247, p. 123276, 2024.

[54]

H. Huynh and Q. Diep , "Analysis and detection of COVID-19 cases on chest X-

ray images using a novel architecture self-development deep-learning," 2021

IEEE International Biomedical Instrumentation and Technology Conference

(IBITeC), 2021.

[55]

F. Saxen and P. Werner , "Face attribute detection with mobilenetv2 and nasnet-

mobile.," 2019 11th international symposium on image and signal processing and

analysis (ISPA). IEEE,, pp. 176-180, 2019.

[56]

Alam, Md Jamshed, MD Imtiaz Kamrul, SM Zia Ur Rashid, and Syed Zahidur

Rashid. "An Expert System Based on Belief Rule to Assess Bank Surveillance

 72

Security." In 2018 International Conference on Innovations in Science,

Engineering and Technology (ICISET), pp. 451-454. IEEE, 2018.

[57]

"A two-stage industrial defect detection framework based on improved-yolov5

and optimized-inception-resnetv2 models.," Applied Sciences, vol. 12, no. 2, p.

834, 2022.

[58]

Shahriar, Faisal, S. Newaz, Syed Zahidur Rashid, Mohammad Azazur Rahman,

and Muhammad Foyazur Rahman. "Designing a reliable and redundant network

for multiple VLANs with Spanning Tree Protocol (STP) and Fast Hop

Redundancy Protocol (FHRP)." In Proc. Int. Conf. Ind. Eng. Oper. Manag, vol.

2018, pp. 534-540. 2018.

[59]

A. Madhwani and . P. Kumar, "Detection of Breast Cancer from Histopathology

Images Using Deep Learning".

[60]

Refat, Chowdhury Mohammad Masum, Rabiul Hasan Tarek, Syed Zahidur

Rashid, and Abdul Gafur. "Design and Performance Investigation of Campus Area

Network (CAN) Based on Different Routing Protocols." 5th INTERNATIONAL

CONFERENCE ON NATURAL SCIENCES AND TECHNOLOGY

(ICNST'18), Asian University for Women Bangladesh

[61]

Syed Zahidur Rashid. “Analysis of Handover Schemes: A Virtual Connection

Tree (VCT) Based Wireless Asynchronous Transfer Mode (WATM) Network

Approach.”,LAP Publishing

[62]

M. Tan and Q. Le , "Efficientnetv2: Smaller models and faster training.,"

International conference on machine learning,PMLR, pp. 10096-10106, 2021.

[63]

MJ Uddin, and Syed Zahidur Rashid. “Performance Analysis of High Frequency

BJT and LDMOS Current Mode Class-D Power Amplifier”, International Journal

of Scientific & Engineering Research, Volume 4, Issue 6, June-2013

[64]

Barua, S., Imran, A. Z. M., Bhuiyan, M. E. H., Barua, S., Rashid, S. Z., Gafur, A.,

& Ahmed, M. R. (2022). Highly efficient microstrip patch antenna for wireless

gigabit alliance applications. Indonesian Journal of Electrical Engineering and

Computer Science, 26(3), 1451-1459.

[65]

dos Santos LF and dos Santos Canuto JL, "Thermographic image-based diagnosis

of failures in electrical motors using deep transfer learning," Engineering

Applications of Artificial Intelligence, vol. 126, p. 107106, 2023.

 73

[66]

B. Singh and S. Rajak , "Deep Neural Networks for Traffic Sign Recognition

Systems," In 2023 6th International Conference on Contemporary Computing and

Informatics (IC3I),IEEE., vol. 6, pp. 472-477, 2023.

[67]

Hossen, S., Uddin, M. K., Gafur, A., Rashid, S. Z., Hannan, S., & Imran, A. Z. M.

(2023, June). Design and analysis of an antenna using ring slotted rectangular

reflector with double substrate for 5G mm-wave application. In 2023 International

Conference on Next-Generation Computing, IoT and Machine Learning (NCIM)

(pp. 1-6). IEEE.

[68]

Hossain, T., Chakraborty, S., Uddin, M. J., Gafur, A., Rashid, S. Z., Rahman, M.

A., & Ibrahim, M. (2023, June). Performance Enhancement of UWB Antenna

Using FSS Layer for millimeter-wave 5G. In 2023 International Conference on

Next-Generation Computing, IoT and Machine Learning (NCIM) (pp. 1-6). IEEE.

[69]

"Towards real-time action recognition on mobile devices using deep models,"

arXiv preprint arXiv, p. 1906.07052, 2017.

[70]

R. Kanagaraj and E. Elakiya , "Predictive Classification Model of Crop Yield Data

Using Artificial Neural Network," 2023 5th International Conference on Inventive

Research in Computing Applications (ICIRCA). IEEE., pp. 747-751, 2023.

[71]

Ibrahim, Nehad M., Dalia Goda Ibrahim Gabr, Atta-ur Rahman, Sujata Dash, and

Anand Nayyar. "A deep learning approach to intelligent fruit identification and

family classification." Multimedia Tools and Applications 81, no. 19 (2022):

27783-27798

[72]

Ünal, Haci Bayram, Ebru Vural, Burcu Kir Savaş, and Yaşar Becerikli. "Fruit

recognition and classification with deep learning support on embedded system

(fruitnet)." In 2020 Innovations in Intelligent Systems and Applications

Conference (ASYU), pp. 1-5. IEEE, 2020.

[73]

Gill, Harmandeep Singh, Osamah Ibrahim Khalaf, Youseef Alotaibi, Saleh

Alghamdi, and Fawaz Alassery. "Multi-Model CNN-RNN-LSTM Based Fruit

Recognition and Classification." Intelligent Automation & Soft Computing 33, no.

1 (2022).

[74]

Septiarini, Anindita, Hamdani Hamdani, Sri Ulan Sari, Heliza Rahmania Hatta,

Novianti Puspitasari, and Wiwien Hadikurniawati. "Image processing techniques

for tomato segmentation applying k-means clustering and edge detection

approach." In 2021 International Seminar on Machine Learning, Optimization,

and Data Science (ISMODE), pp. 92-96. IEEE, 2022.

 74

[75]

Sudharshan, Duth P., and T. N. Jhansy. "Tomato Fruits Disease Detection Using

Image Processing." In 2022 International Conference on Futuristic Technologies

(INCOFT), pp. 1-6. IEEE, 2022.

[76]

Mureşan, Horea-Bogdan. "An Automated Algorithm for Fruit Image Dataset

Building." In 2022 17th Conference on Computer Science and Intelligence

Systems (FedCSIS), pp. 103-107. IEEE, 2022.

[77]

Legaspi, Jericho, John Raphael Pangilinan, and Noel Linsangan. "Tomato

Ripeness and Size Classification Using Image Processing." In 2022 5th

International Seminar on Research of Information Technology and Intelligent

Systems (ISRITI), pp. 613-618. IEEE, 2022.

[78]

Tunio, Muhammad Hanif, Li Jianping, Muhammad Hassaan Farooq Butt, Imran

Memon, and Yumna Magsi. "Fruit Detection and Segmentation Using Customized

Deep Learning Techniques." In 2022 19th International Computer Conference on

Wavelet Active Media Technology and Information Processing (ICCWAMTIP),

pp. 1-5. IEEE, 2022.

[79]

Nagesh, A. Seetharam, and G. N. Balaji. "Deep Learning Approach for

Recognition and Classification of Tomato Fruit Diseases." In 2022 International

Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI), vol. 1,

pp. 1-6. IEEE, 2022

[80]

Azman, Nur Fitrah, Nor Ashikin Mohamad Kamal, and Norizan Mat Diah.

"Tomato Fruit Ripening Classification Using Wavelet-Based Feature Extraction

and Multilayer Perceptron." In 2023 IEEE International Conference on

Agrosystem Engineering, Technology & Applications (AGRETA), pp. 119- 124.

IEEE, 2023.

[81]

Hong, Suk-Ju, Seongmin Park, Chang-Hyup Lee, Sungjay Kim, Seung-Woo Roh,

Nandita Irsaulul Nurhisna, and Ghiseok Kim. "Application of X-ray 45

[82]

Kushwaha, Arvinda. "Fruit Classification Using Optimized CNN." In 2023

International Conference on IoT, Communication and Automation Technology

(ICICAT), pp. 1-5. IEEE, 2023.

[83]

Mehta, Shiva, Vinay Kukreja, and Rishika Yadav. "A Federated Learning CNN

Approach for Tomato Leaf Disease with Severity Analysis." In 2023 Second

 75

International Conference on Augmented Intelligence and Sustainable Systems

(ICAISS), pp. 309-314. IEEE, 2023.

[84]

Saini, Archana, Kalpna Guleria, and Shagun Sharma. "Tomato Leaf Disease

Classification using Convolutional Neural Network Model." In 2023 Second

International Conference on Electrical, Electronics, Information and

Communication Technologies (ICEEICT), pp. 01-06. IEEE, 2023.

[85]

Singh, Utpal Kant, Rajnish Kumar, Saurabh Kumar, Shibasish Kar, and Santos

Kumar Baliarsingh. "Detection of Diseases in Tomato Plants using Convolutional

Neural Network." In 2023 14th International Conference on Computing

Communication and Networking Technologies (ICCCNT), pp. 1-6. IEEE, 2023.

[86]

Roy, Kyamelia, Sheli Sinha Chaudhuri, Jaroslav Frnda, Srijita Bandopadhyay,

Ishan Jyoti Ray, Soumen Banerjee, and Jan Nedoma. "Detection of tomato leaf

diseases for agro-based industries using novel PCA DeepNet." IEEE Access 11

(2023): 14983-15001.

[87]

H. Yalcin and S. Razavi , "Plant classification using convolutional neural

networks," 2016 Fifth International Conference on Agro-Geoinformatics (Agro-

Geoinformatics). IEEE, pp. 1-5, 2016.

[88]

A. Kayabasi and A. Toktas , "Automatic classification of agricultural grains:

Comparison of neural networks," Neural Network World, vol. 28, no. 3, 2018.

[89]

S. Kujawa and G. Niedbała , "Artificial neural networks in agriculture.,"

Agriculture, vol. 11, no. 6, p. 497, 2021.

[90]

A. Gupta and P. Nahar , "Classification and yield prediction in smart agriculture

system using IoT," Journal of Ambient Intelligence and Humanized Computing,

vol. 14, no. 8, pp. 10235-10244, (2023).

[91]

A. Hamzah and A. Mohamed , "Classification of white rice grain quality using

ANN: a review," IAES International Journal of Artificial Intelligence, vol. 9, no.

4, 2020.

[92]

A. W. Whitney, “A direct method of nonparametric measurement selection,” IEEE

Transactions on Computers, vol. 100, no. 9, pp. 1100–1103, 1971.

 76

[93]

A. Panthakkan and S. Anzar , "Concatenated Xception-ResNet50—A novel

hybrid approach for accurate skin cancer prediction," Computers in Biology and

Medicine, vol. 150, p. 106170, 2022.

[94]

"MendeleyData,"[Online].Available:https://data.mendeley.com/datasets/9zyvdgp

83m/1.

[95]

"kaggle," [Online]. Available:https://www.kaggle.com/datasets/enalis/tomatoes-

dataset.

[96]

L. Quach and K. Quoc , "Explainable deep learning models with gradient-

weighted class activation mapping for smart agriculture," IEEE Access 11, pp.

83752-83762., 2023.

77

APPENDIX

Methodology (For Testing)

For the sake of testing, this is my operational procedure.

Working Flowchart for Testing

Initial Data Gathering

 Start by collecting primary data from relevant sources. Ensure the collected data covers

the necessary aspects of your project and is of good quality. Organize the data in a

structured format for further analysis.

Data Preparation

Clean and preprocess the collected data by addressing any missing values, outliers, or

inconsistencies. Standardize or normalize the data to ensure consistency across different

features. Convert categorical data into numerical formats if required. Split the

preprocessed data into testing sets for model development and evaluation.

Creation of Testing Set

Allocate a portion of the preprocessed data specifically for testing purposes.This

segregated dataset will be used to assess the model's performance independently.

Model Evaluation

Choose an appropriate machine learning algorithm based on your problem's nature and

data characteristics. Train the selected model using the training dataset. Fine-tune

model parameters to optimize its performance. Evaluate the model's effectiveness using

various metrics such as accuracy, precision, recall, or mean squared error. Utilize

 78

techniques like cross-validation to validate the model's generalization capabilities.

Analysis of Expected Results

Analyze the performance of the trained model and derive insights from the obtained

results. Identify areas for potential enhancement based on the model's performance

metrics. Adjust the model architecture or data preprocessing methods as needed. Iterate

through the process as required until the desired level of performance is achieved.

Anticipate deploying the trained model for making predictions on new, unseen data.

Performance Analysis of Adam optimizer in our model

This Following graph shows that as the quantity of epochs grows, loss drops, and

accuracy rises.

Figure: Accuracy and Loss curve in Adam Optimizer in 25 epoch

Figure: Confusion matrix of Adam Optimizer for our model

As the number of epochs rose, it is clear from the Figure confusion matrix. Adam

optimized in this respect and achieved 68.00% testing accuracy.

 79

Result Analysis of model

Adam performed marginally better when dealing with my model, which has a learning

rate of 0.001.

Table : COMPARISON TABLE OF ABOVE ONE OPTIMIZERS IN OUR MODEL:

Predicted Sample

Examine an image of tomatoes.ResNet50V2 predicts with 68% accuracy that the image

contains tomatoes. Here’s an illustration of a predicted sample.

Figure : Present a visual representation demonstrating the examination of predicted tomato images.

Optimizer Learning

Rate

Epoch Validation

Accuracy

Secondary

Validation

Loss

Secondary

Validation

Accuracy

Primary

Validation

Loss

Primary

Adam 0.001 25 0.9536 0.2965 0.6835 0.3165

 80

Primary Data Outcomes

Firstly, I collected primary data(raw data) for testing purposes. My model was able to

predict the primary data. I separated into four classes ripe, unripe, damaged, old. I

collected 49 photos, and my accuracy is 68%.Due to time constraints, I couldn't gather

enough old data, impacting accuracy. I plan to address this by working with larger

datasets in the future. To compensate for the lack of data, I supplemented with data

from Kaggle to complete the thesis.

 81

The codes that I used in my experiment is given down below:

Primary Model Codes

from google.colab import drive

drive.mount('/content/drive')

train_dir = tf.keras.preprocessing.image_dataset_from_directory(

 " /content/drive/MyDrive/ tomatoes_dataset/train",

 seed=123,

 shuffle=True,

 image_size=(224,224),

 batch_size=32

)

classes_tn = train_dir.class_names

classes_tn

val_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "tomatoes_dataset/val",

 seed=123,

 shuffle=False,

 image_size=(224,224),

 batch_size=32

)

classes_vl = val_dir.class_names

classes_vl

test_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "tomatoes_dataset/test",

 seed=123,

 shuffle=False,

 image_size=(224,224),

 batch_size=32

)

image_class = test_dir.class_names

image_class

Scaling Data

train_dir=train_dir.map(lambda x,y:(x/255,y))

val_dir=val_dir.map(lambda x,y:(x/255,y))

test_dir=test_dir.map(lambda x,y:(x/255,y))

scaled_iterator=train_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

scaled_iterator=val_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

scaled_iterator=test_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

 82

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dir = train_dir.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)

val_dir = val_dir.cache().prefetch(buffer_size=AUTOTUNE)

test_dir = test_dir.cache().prefetch(buffer_size=AUTOTUNE)

#Augmentation

aug = tf.keras.Sequential([

 layers.RandomFlip("horizontal_and_vertical"),

 layers.RandomRotation(0.2),

 layers.RandomZoom(0.2)

])

train_dir= train_dir.map(

 lambda x, y: (aug(x, training=True), y)

).prefetch(buffer_size=tf.data.AUTOTUNE)

import tensorflow as tf

tf.get_logger().setLevel('ERROR')

import matplotlib.pyplot as plt

import os

import cv2

import imghdr

import time

import numpy as np

import seaborn as sns

from tensorflow import keras

from tensorflow.keras.preprocessing import image_dataset_from_directory

from tensorflow.keras import callbacks

from tensorflow.keras import models, layers

from tensorflow.keras.models import Sequential,Model

from tensorflow.keras.applications import MobileNetV2,ResNet50V2,ResNet50

from tensorflow.keras.layers import

experimental,MaxPooling2D,GlobalAveragePooling2D, \

 Conv2D,BatchNormalization,Dense,Dropout,Flatten

from sklearn.metrics import accuracy_score, recall_score, precision_score, \

 f1_score,confusion_matrix,classification_report

ADAM

compile the model

firstR_model.compile(

 optimizer=keras.optimizers.Adam(learning_rate=1e-3,decay= 1e-3),

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),

 83

 metrics=['accuracy']

)

checkpoint_path = 'Model/check_am/weights-improvement-{epoch:02d}-

{val_accuracy:.2f}.hdf5'

checkpoint_dir = os.path.dirname(checkpoint_path)

cp_callback = callbacks.ModelCheckpoint(checkpoint_path,

 monitor='val_accuracy',

 verbose=1,

 save_best_only=True,

 mode='max',

 save_freq='epoch')

early_stoping=callbacks.

EarlyStopping(monitor="val_loss",

 patience=2,

 verbose=1

)

#fitting model

start = time.time()

history = firstR_model.fit(

 train_dir,

 batch_size=32,

 validation_data=val_dir,

 verbose=1,

 epochs=25,

 callbacks = [cp_callback]

)

print("Total time: ",

 time.time() - start,

 "seconds")

scores = firstR_model.evaluate(val_dir)

scores

HISTORY

history.params

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

EPOCHS=range(1, len(acc) + 1)

plt.figure(figsize=(10,6))

plt.subplot(1, 2, 1)

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta')

 84

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue')

plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy',fontsize=15)

plt.subplot(1, 2, 2)

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta')

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue')

plt.legend(loc='upper right')

plt.title('Training and Validation Loss',fontsize=15)

plt.show()

def actual_predicted_labels(val_dir):

 actual = [labels for _, labels in val_dir.unbatch()]

 prediction = firstR_model.predict(val_dir)

 actual = tf.stack(actual, axis=0)

 predicted = tf.concat(prediction, axis=0)

 predicted = tf.argmax(prediction, axis=1)

 return actual, predicted

def confusion_matrix(actual, predicted,labels=classes_tn):

 cm = tf.math.confusion_matrix(actual, predicted)

 ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g')

 sns.set(rc={'figure.figsize':(8, 6)})

 sns.set(font_scale=1.2)

 plt.xticks(rotation=90)

 plt.yticks(rotation=0)

 ax.xaxis.set_ticklabels(labels)

 ax.yaxis.set_ticklabels(labels)

 ax.set_title('Confusion matrix of Tomato Detection')

 ax.set_xlabel('Predicted Action')

 ax.set_ylabel('Actual Action')

actual, predicted = actual_predicted_labels(val_dir)

print(confusion_matrix(actual, predicted, classes_tn))

print(classification_report(actual, predicted, target_names=classes_tn))

ADAMAX

compile the model

firstR_model.compile(

 optimizer=keras.optimizers.Adam(learning_rate=1e-3,decay= 1e-3),

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),

 metrics=['accuracy']

 85

)

checkpoint_path = 'Model/check_am/weights-improvement-{epoch:02d}-

{val_accuracy:.2f}.hdf5'

checkpoint_dir = os.path.dirname(checkpoint_path)

cp_callback = callbacks.ModelCheckpoint(checkpoint_path,

 monitor='val_accuracy',

 verbose=1,

 save_best_only=True,

 mode='max',

 save_freq='epoch')

early_stoping=callbacks.EarlyStopping(monitor="val_loss",

 patience=2,

 verbose=1

)

#fitting model

start = time.time()

history = firstR_model.fit(

 train_dir,

 batch_size=32,

 validation_data=val_dir,

 verbose=1,

 epochs=25,

 callbacks = [cp_callback]

print("Total time: ",

 time.time() - start,

 "seconds")

scores = firstR_model.evaluate(val_dir)

HISTORY

history.params

 86

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

EPOCHS=range(1, len(acc) + 1)

plt.figure(figsize=(10,6))

plt.subplot(1, 2, 1)

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta')

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue')

plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy',fontsize=15)

plt.subplot(1, 2, 2)

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta')

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue')

plt.legend(loc='upper right')

plt.title('Training and Validation Loss',fontsize=15)

plt.show()

def actual_predicted_labels(val_dir):

actual = [labels for _, labels in val_dir.unbatch()]

 prediction = firstR_model.predict(val_dir)

 actual = tf.stack(actual, axis=0)

 predicted = tf.concat(prediction, axis=0)

 predicted = tf.argmax(prediction, axis=1)

return actual, predicted

def confusion_matrix(actual, predicted,labels=classes_tn):

 cm = tf.math.confusion_matrix(actual, predicted)

 ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g')

 87

 sns.set(rc={'figure.figsize':(8, 6)})

 sns.set(font_scale=1.2)

 plt.xticks(rotation=90)

 plt.yticks(rotation=0)

 ax.xaxis.set_ticklabels(labels)

 ax.yaxis.set_ticklabels(labels)

 ax.set_title('Confusion matrix of Tomato Detection')

 ax.set_xlabel('Predicted Action')

 ax.set_ylabel('Actual Action')

actual, predicted = actual_predicted_labels(val_dir)

print(confusion_matrix(actual, predicted, classes_tn))

print(classification_report(actual, predicted, target_names=classes_tn))

Existing Model

from google.colab import drive

drive.mount('/content/drive')

import tensorflow as tf

tf.get_logger().setLevel('ERROR')

import matplotlib.pyplot as plt

import os

import cv2

import imghdr

import time

import numpy as np

import seaborn as sns

from tensorflow import keras

from tensorflow.keras import callbacks

from tensorflow.keras import models, layers

from tensorflow.keras.models import Sequential,Model

from tensorflow.keras.applications import MobileNetV2,ResNet50V2,ResNet50

from tensorflow.keras.layers import experimental,MaxPooling2D,GlobalAveragePooling2D, \

 Conv2D,BatchNormalization,Dense,Dropout,Flatten

from sklearn.metrics import accuracy_score, recall_score, precision_score, \

 f1_score,confusion_matrix,classification_report

 88

train_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "tomatoes_dataset/train",

 seed=123,

 shuffle=True,

 image_size=(224,224),

 batch_size=32

)

classes_tn = train_dir.class_names

classes_tn

val_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "tomatoes_dataset/val",

 seed=123,

 shuffle=False,

 image_size=(224,224),

 batch_size=32

)

classes_vl = val_dir.class_names

classes_vl

test_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "tomatoes_dataset/test",

 seed=123,

 shuffle=False,

 image_size=(224,224),

 batch_size=32

)

image_class = test_dir.class_names

image_class

train_dir=train_dir.map(lambda x,y:(x/255,y))

val_dir=val_dir.map(lambda x,y:(x/255,y))

test_dir=test_dir.map(lambda x,y:(x/255,y))

scaled_iterator=train_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

scaled_iterator=val_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

scaled_iterator=test_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dir = train_dir.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)

val_dir = val_dir.cache().prefetch(buffer_size=AUTOTUNE)

test_dir = test_dir.cache().prefetch(buffer_size=AUTOTUNE)

aug = tf.keras.Sequential([

 89

 layers.RandomFlip("horizontal_and_vertical"),

 layers.RandomRotation(0.2),

 layers.RandomZoom(0.2)

])

train_dir= train_dir.map(

 lambda x, y: (aug(x, training=True), y)

).prefetch(buffer_size=tf.data.AUTOTUNE)

plt.figure(figsize=(10, 7))

for images, _ in train_dir.take(3):

 for i in range(6):

 augmented_images = aug(images)

 ax = plt.subplot(2, 3, i + 1)

 plt.imshow(augmented_images[0].numpy())

IMG_SIZE=[224,224]

baseR_model = ResNet50V2(input_shape=IMG_SIZE + [3],

 weights='imagenet',

 include_top=False)

baseR_model.summary()

tf.keras.utils.plot_model(

 baseR_model, to_file='baseR_model.png',show_shapes=True,show_layer_names=True

)

compile the model

firstR_model.compile(

 optimizer=keras.optimizers.Adam(learning_rate=1e-4,decay= 1e-3),

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),

 metrics=['accuracy']

)

checkpoint_path = 'Model/check_A/weights-improvement-{epoch:02d}-{val_accuracy:.2f}.hdf5'

checkpoint_dir = os.path.dirname(checkpoint_path)

cp_callback = callbacks.ModelCheckpoint(checkpoint_path,

 monitor='val_accuracy',

 verbose=1,

 save_best_only=True,

 mode='max',

 save_freq='epoch')

early_stoping=callbacks.EarlyStopping(monitor="val_loss",

 patience=2,

 verbose=1

)

#fitting model

start = time.time()

 90

history = firstR_model.fit(

 train_dir,

 batch_size=32,

 validation_data=val_dir,

 verbose=1,

 epochs=25,

 callbacks = [cp_callback]

)

print("Total time: ",

 time.time() - start,

 "seconds")

scores = firstR_model.evaluate(val_dir)

scores

history

history.params

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

EPOCHS=range(1, len(acc) + 1)

plt.figure(figsize=(10,6))

plt.subplot(1, 2, 1)

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta')

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue')

plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy',fontsize=15)

plt.subplot(1, 2, 2)

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta')

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue')

plt.legend(loc='upper right')

plt.title('Training and Validation Loss',fontsize=15)

plt.show()

def actual_predicted_labels(val_dir):

 actual = [labels for _, labels in val_dir.unbatch()]

 prediction = firstR_model.predict(val_dir)

 actual = tf.stack(actual, axis=0)

 predicted = tf.concat(prediction, axis=0)

 predicted = tf.argmax(prediction, axis=1)

 91

 return actual, predicted

def confusion_matrix(actual, predicted,labels=classes_tn):

 cm = tf.math.confusion_matrix(actual, predicted)

 ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g')

 sns.set(rc={'figure.figsize':(8, 6)})

 sns.set(font_scale=1.2)

 plt.xticks(rotation=90)

 plt.yticks(rotation=0)

 ax.xaxis.set_ticklabels(labels)

 ax.yaxis.set_ticklabels(labels)

 ax.set_title('Confusion matrix of Tomato Detection')

 ax.set_xlabel('Predicted Action')

 ax.set_ylabel('Actual Action')

actual, predicted = actual_predicted_labels(val_dir)

print(confusion_matrix(actual, predicted, classes_tn))

print(classification_report(actual, predicted, target_names=classes_tn))

ADAMAX

compile the model

firstR_model.compile(

 optimizer=keras.optimizers.Adam(learning_rate=1e-3,decay= 1e-3),

 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),

 metrics=['accuracy']

)

checkpoint_path = 'Model/check_AdmxB/weights-improvement-{epoch:02d}-

{val_accuracy:.2f}.hdf5'

checkpoint_dir = os.path.dirname(checkpoint_path)

cp_callback = callbacks.ModelCheckpoint(checkpoint_path,

 monitor='val_accuracy',

 verbose=1,

 save_best_only=True,

 mode='max',

 save_freq='epoch')

early_stoping=callbacks.EarlyStopping(monitor="val_loss",

 patience=2,

 verbose=1

)

#fitting model

start = time.time()

history = firstR_model.fit(

 train_dir,

 batch_size=32,

 validation_data=val_dir,

 92

 verbose=1,

 epochs=25,

 callbacks = [cp_callback]

)

print("Total time: ",

 time.time() - start,

 "seconds")

scores = firstR_model.evaluate(val_dir)

scores

history

history.params

acc = history.history['accuracy']

val_acc = history.history['val_accuracy']

loss = history.history['loss']

val_loss = history.history['val_loss']

EPOCHS=range(1, len(acc) + 1)

plt.figure(figsize=(10,6))

plt.subplot(1, 2, 1)

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta')

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue')

plt.legend(loc='lower right')

plt.title('Training and Validation Accuracy',fontsize=15)

plt.subplot(1, 2, 2)

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta')

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue')

plt.legend(loc='upper right')

plt.title('Training and Validation Loss',fontsize=15)

plt.show()

def actual_predicted_labels(val_dir):

 actual = [labels for _, labels in val_dir.unbatch()]

 prediction = firstR_model.predict(val_dir)

 actual = tf.stack(actual, axis=0)

 predicted = tf.concat(prediction, axis=0)

 predicted = tf.argmax(prediction, axis=1

 return actual, predicted

def confusion_matrix(actual, predicted,labels=classes_tn):

 cm = tf.math.confusion_matrix(actual, predicted)

 ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g')

 93

 sns.set(rc={'figure.figsize':(8, 6)})

 sns.set(font_scale=1.2)

 plt.xticks(rotation=90)

 plt.yticks(rotation=0)

 ax.xaxis.set_ticklabels(labels)

 ax.yaxis.set_ticklabels(labels)

 ax.set_title('Confusion matrix of Tomato Detection')

 ax.set_xlabel('Predicted Action')

 ax.set_ylabel('Actual Action')

actual, predicted = actual_predicted_labels(val_dir)

print(confusion_matrix(actual, predicted, classes_tn))

print(classification_report(actual, predicted, target_names=classes_tn))

DEMO CODE

from google.colab import drive

drive.mount('/content/drive')

import tensorflow as tf

tf.get_logger().setLevel('ERROR')

import matplotlib.pyplot as plt

import os

import cv2

import imghdr

import time

import numpy as np

import seaborn as sns

from tensorflow import keras

from tensorflow.keras import callbacks

from tensorflow.keras import models, layers

from tensorflow.keras.models import Sequential,Model

from tensorflow.keras.applications import MobileNetV2,ResNet50V2,ResNet50

from tensorflow.keras.layers import experimental,MaxPooling2D,GlobalAveragePooling2D, \

 Conv2D,BatchNormalization,Dense,Dropout,Flatten

from sklearn.metrics import accuracy_score, recall_score, precision_score, \

 f1_score,confusion_matrix,classification_report

#directory

train_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "/content/drive/MyDrive/Colab Notebooks /tomatoes_datasets/train",

 seed=123,

 shuffle=True,

 94

 image_size=(224,224),

 batch_size=32

)

classes_tn = train_dir.class_names

classes_tn

val_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "/content/drive/MyDrive/Colab Notebooks/Ifat_bappy/tomatoes_datasets/val",

 seed=123,

 shuffle=False,

 image_size=(224,224),

 batch_size=32

)

classes_vl = val_dir.class_names

classes_vl

test_dir = tf.keras.preprocessing.image_dataset_from_directory(

 "/content/drive/MyDrive/Colab Notebooks/Ifat_bappy/tomatoes_datasets/sample_test",

 seed=123,

 shuffle=False,

 image_size=(224,224),

 batch_size=64

)

image_class = test_dir.class_names

image_class

Scaling Data

train_dir=train_dir.map(lambda x,y:(x/255,y))

val_dir=val_dir.map(lambda x,y:(x/255,y))

test_dir=test_dir.map(lambda x,y:(x/255,y))

scaled_iterator=train_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

scaled_iterator=val_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

scaled_iterator=test_dir.as_numpy_iterator()

label_batch=scaled_iterator.next()

AUTOTUNE = tf.data.experimental.AUTOTUNE

train_dir = train_dir.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)

val_dir = val_dir.cache().prefetch(buffer_size=AUTOTUNE)

test_dir = test_dir.cache().prefetch(buffer_size=AUTOTUNE)

#Augmentation

aug = tf.keras.Sequential([

 layers.RandomFlip("horizontal_and_vertical"),

 layers.RandomRotation(0.2),

 95

 layers.RandomZoom(0.2)

])

train_dir= train_dir.map(

 lambda x, y: (aug(x, training=True), y)

).prefetch(buffer_size=tf.data.AUTOTUNE)

plt.figure(figsize=(10, 7))

for images, _ in train_dir.take(3):

 for i in range(6):

 augmented_images = aug(images)

 ax = plt.subplot(2, 3, i + 1)

 plt.imshow(augmented_images[0].numpy())

IMG_SIZE=[224,224]

baseR_model = ResNet50V2(input_shape=IMG_SIZE + [3],

 weights='imagenet',

 include_top=False)

baseR_model.summary()

tf.keras.utils.plot_model(

 baseR_model, to_file='baseR_model.png',show_shapes=True,show_layer_names=True

)

AccuracyVector = []

plt.figure(figsize=(30, 20))

for images, labels in test_dir.take(1):

 predictions = firstR_model.predict(images)

 predlabel = []

 prdlbl = []

 for mem in predictions:

 predlabel.append(image_class[np.argmax(mem)])

 prdlbl.append(np.argmax(mem))

 AccuracyVector = np.array(prdlbl) == labels

 for i in range(30):

 ax = plt.subplot(3, 10, i + 1)

 plt.imshow(images[i].numpy())

 plt.title('Pred: '+ predlabel[i]+ '\n'+ ' actual:'+image_class[labels[i]])

 plt.axis('off')

AccuracyVector = []

plt.figure(figsize=(25, 25))

for images, labels in test_dir.take(1):

 predictions = firstR_model.predict(images)

 predlabel = []

 prdlbl = []

 for mem in predictions:

 96

 predlabel.append(image_class[np.argmax(mem)])

 prdlbl.append(np.argmax(mem))

 AccuracyVector = np.array(prdlbl) == labels

 for i in range(49):

 ax = plt.subplot(7, 7, i + 1)

 plt.imshow(images[i].numpy())

 plt.title('Pred: '+ predlabel[i]+ '\n'+ ' actual:'+image_class[labels[i]])

 plt.axis('off')

 plt.grid(True)

