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ABSTRACT 

Tomatoes fruits, a pivotal constituent of tomato plants, with a primary emphasis on 

elucidating the mechanisms governing their quality formation during the ripening 

process. Against the backdrop of heightened interest in the tomato industry, the research 

endeavours to augment the efficacy and success of automatic detection under 

greenhouse tomato conditions, a pivotal facet for the progression of contemporary 

agricultural practices. The paper introduces a ground-breaking method using 

convolutional neural networks to accurately classify tomato fruits based on their 

ripeness and overall condition. The study adopts a modified ResNet50V2 architecture 

as the underpinning framework for the CNN model, renowned for its effectiveness in 

image classification tasks. The outcomes demonstrate a commendable 95.36% accuracy 

in categorizing tomato fruits into four distinct classes: unripe, ripe, old, and damaged. 
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CHAPTER 1 

 Introduction 

1.1       Introduction 

An inventive approach to tomato fruit quality detection is being explored through 

machine learning or computer vision technology, which is capable of accurately 

assessing the ripeness and quality of fruits based on various factors such as fresh 

appearance, color, size, and texture. A tomato is a fruit that is ready to be picked after 

it reaches commercial maturity. Tomato, commonly used in various culinary dishes, is 

known for its rich flavor and nutritional value and is a staple ingredient in many cuisines 

around the world. Its vibrant red color and juicy texture make it visually appealing, 

while its high levels of vitamins and antioxidants contribute to its nutritional value. The 

use of machine learning and computer vision in tomato fruit quality detection can 

revolutionize the agricultural industry by providing efficient and accurate methods for 

assessing the freshness and quality of tomatoes, ensuring that only the best produce 

reaches consumers' plates. Since tomatoes are cultivated in a variety of temperatures 

and locales, it might be difficult to identify and locate them. To guarantee that only ripe 

and healthy tomatoes are harvested, hence enhancing the overall quality of the crop, it 

is crucial to precisely identify and localize tomatoes in images. Tomato localization and 

identification may be made more efficient and less prone to human error by automating 

the procedure. This may be accomplished by using Computer vision technology, as it 

can evaluate fruit imagery and classify them according to factors such freshness and 

quality. 

In the realm of agriculture, the integration of deep learning technologies is steering a 

transformative era, with convolutional neural networks (CNN) leading the charge 

[1].These advanced technologies are not only revolutionizing the detection of tomato 

leaf diseases but also hold immense promise for the broader field of crop identification. 

In particular, plant factories, emblematic of vertical agriculture, have emerged as 

groundbreaking solutions for sustainable crop production, ensuring a consistent year-

round supply of vegetables, with tomatoes taking center stage. 

However, the dense foliage characteristic of tomato plants presents a significant 

challenge to detection accuracy, particularly for small-target varieties. Recent 
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initiatives have showcased the versatility and efficacy of diverse CNN architectures, 

including AlexNet, GoogLeNet, VGGNet, and ResNet, in addressing this challenge.  

Researchers have leveraged these architectures to undertake tasks ranging from the 

creation of candidate structures to precise bounding box positioning through regression, 

specifically in the identification of tomato leaf diseases [2]. 

Recent strides in fruit identification have unveiled the considerable potential of CNNs. 

Pioneering initiatives have deployed rapid R-CNN and modified YOLOV3 for the 

detection of ripe and diseased tomatoes, offering glimpses into the future of automated 

crop monitoring [3]. Despite these advancements, the broader challenge of enhancing 

the accuracy of overall crop detection persists, necessitating the development of 

advanced CNN techniques tailored for agriculture [4]. A recent breakthrough involves 

the integration of semantic segmentation algorithms, promising to elevate the precision 

of identifying distinct crop parts. 

In parallel, current detection models, often reliant on intricate and heavyweight 

architectures, not only impede accurate identification but also hinder the deployment of 

robots for essential operations within plant factories, thereby escalating manufacturing 

costs. Recognizing the imperative to overcome these limitations, a dedicated project is 

underway, seeking to propel tomato fruit detection to new heights by employing 

sophisticated CNN techniques[5]. The objective is clear: to enhance the efficiency and 

feasibility of automated agricultural operations within plant factories, heralding a new 

era of precision and sustainability in farming practices[6]. 

1.2      Deep  Learning 

Deep learning is a type of machine learning that uses neural networks with numerous 

layers (deep neural networks) to learn and represent complicated patterns in data. The 

term "deep" refers to the depth of the neural network, which is made up of 

interconnected layers of nodes, each of which learns and extracts hierarchical aspects 

from the input data[7]. Deep learning has demonstrated exceptional performance in 

domains like as picture and speech recognition, natural language processing, and 

decision-making [8].Artificial neural networks were first introduced in the 1940s, 

which is when deep learning first emerged. But deep learning didn't become popular 
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until the 2000s and 2010s, when enormous datasets became available, computational 

power increased, and creative techniques were employed[9]. 

Artificial intelligence is dominated by deep learning, which is driving advances in a 

number of industries, including finance, healthcare, agriculture  and autonomous 

systems[10]. Deep learning's continual influence on the creation of intelligent systems 

is a result of its ongoing investigation and improvement [11]. 

1.3       Convolution Neural Network  

Convolutional neural networks (CNNs) are a kind of deep neural network that are 

particularly useful for tasks like computer vision and image recognition since they are 

built for processing and evaluating visual data. Convolutional layers are a tool used by 

CNNs to extract complex features and patterns automatically and hierarchically from 

input images [12]. 

CNN is extremely valuable since it reduces human work by automatically detecting the 

features. For example, for apples and mangoes, it would automatically detect the 

various characteristics of each class on its own[13]. CNNs are a type of Deep Neural 

Network that can recognize and classify specific aspects in images and are commonly 

used to analyze visual images. Their applications include image and video recognition, 

classification, medical image analysis, computer vision, and natural language 

processing. CNN has great accuracy, which makes it ideal for picture recognition[14]. 

The name "Convolution" in CNN refers to the mathematical function of convolution, 

which is a special type of linear operation in which two functions are multiplied to form 

a third function that expresses how the shape of one function is altered by the other. 

Simply put, two images that can be represented as matrices are multiplied to provide an 

output that is then used to extract features from the image [15]. 

CNNs originated in the 1980s and 1990s, when Yann LeCun and others made 

substantial contributions to the creation of convolutional neural network designs.It 

wasn't until the 2010s that CNNs became widely recognized and adopted. In 2012, Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton created the AlexNet, a deep CNN that 

won the ImageNet Large Scale Visual Recognition Challenge.Subsequent advances 

included GoogLeNet (2014) and ResNet (2015), which added innovative architectural 

aspects such as inception modules and residual connections, respectively, to improve 
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CNN efficiency and accuracy[16]. CNNs are the core of computer vision applications, 

enabling advances in facial recognition, object detection, medical picture analysis, and 

other area  [17] . The ongoing evolution of CNN architectures and techniques continues 

to drive progress in the field of deep learning and visual data processing. 

1.4     Pre-trained Models   

A pre-trained model is one that has learnt parameters (weights and biases) on a big 

dataset for a particular job, like natural language processing or image classification, and 

that model has been saved after training. Large datasets, like Wikipedia for language 

modeling or ImageNet for image classification, are frequently used to train these pre-

trained models. Pre-trained models are frequently employed in transfer learning, which 

involves adapting and transferring training data from one task to another that is related 

but different. Researchers and practitioners can use the learned representations to 

improve performance on the target task by initializing a new model using pre-trained 

weights[18].Pre-trained models are frequently used for natural language processing 

tasks like BERT, GPT, and Transformer as well as picture classification tasks like 

VGG, ResNet, and Inception. These pre-trained models have demonstrated state-of-

the-art performance on a range of tasks when appropriately altered or changed, and they 

have been widely adopted across different domains[19]. 

Pre-trained models have the main benefit of being able to extract broad features and 

patterns from the training set, which may subsequently be adjusted or applied to 

different tasks using smaller datasets. When dealing with sparse data, this method can 

drastically cut down on the amount of computational power and time needed to train a 

model from start[20]. 

1.5       Residual Network 

A particular kind of deep neural network architecture called ResNet, or Residual 

Network, was created to solve the difficulties involved in training extremely deep 

networks. When ResNet was first presented by Kaiming He et al. in 2015, it 

revolutionized the deep learning space[21].The usage of residual blocks, which include 

skip or shortcut connections, is the primary innovation in ResNet. By allowing the 

network to bypass one or more layers during training, these links help gradients move 

more easily throughout the network. This aids in reducing the vanishing gradient issue, 
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which can impede training in very deep networks [22].ResNet-50 is a 50-layer 

convolutional neural network (48 convolutional layers, one MaxPool layer, and one 

average pool layer). 10]ResNet-50v2 is a variation of the ResNet (Residual Network) 

architecture, which is a deep convolutional neural network (CNN). ResNet was 

developed to solve the problem of training very deep neural networks by leveraging 

residual or skip connections[23]. The "50" in ResNet-50v2 stands for the network's 

depth, indicating that it includes 50 layers. The "v2" indicates that it is an upgraded or 

better version that incorporates improvements over the ResNet-50 architecture in its 

initial form. Similar to its forerunners, ResNet-50v2 is extensively employed for a range 

of computer vision applications, such as feature extraction, object identification, and 

image classification [24]. The architecture is well-liked in the deep learning community 

because of how well it handles deep networks and how well it can capture intricate 

hierarchical characteristics. As we discussed in the context of changing ResNet-50V2 

for tomato detection in a prior session, it is normal practice when working with ResNet-

50v2 or any other deep neural network to fine-tune or modify the architecture based on 

the specific requirements of the task at hand [25]. 

1.5.1     Frozen Layer 

A frozen layer in neural networks refers to a layer whose weights and biases are not 

updated during training. This means that the frozen layer's parameters remain constant 

throughout training, effectively "freezing" them [26]. The notion of freezing layers is 

widely employed in transfer learning and fine-tuning scenarios, in which pre-trained 

models are applied to new tasks or domains. In such circumstances, the network's early 

layers, which often capture low-level data such as edges or textures, may already be 

well-suited to the new task and can be frozen to minimize overfitting while retaining 

previously learned knowledge[27]. Overall, freezing layers is a useful strategy in neural 

network training since it enables practitioners to use pre-trained models efficiently and 

effectively for new tasks while avoiding wasteful retraining of previously learnt 

features. This technique is often used in transfer learning, where the base model(trained 

on some other dataset)is frozen. 

1.5.2     Fatten Layer  

A flatten layer is a sort of layer that is often employed in deep learning neural networks, 
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notably convolutional neural networks (CNNs). Its principal role is to convert 

multidimensional array data into one-dimensional arrays or vectors. 

In convolutional neural networks, prior layers usually execute operations such as 

convolution and pooling, which produce multidimensional outputs or feature maps.  

However, when feeding data into fully connected layers (also known as dense layers) 

for tasks such as classification or regression, the input is typically one dimension. Here's 

where the flatten layer comes in[28].The flatten layer essentially reshapes the previous 

layers' multidimensional output into a flat vector by collapsing all dimensions save the 

first (batch dimension) into one. This transformation preserves the spatial relationships 

acquired by the previous layers while preparing the input for further processing by the 

fully connected layers.For example, if the output of the previous layers is a 3D tensor 

with dimensions (batch_size, height, width, depth), the flatten layer will convert it to a 

1D tensor with dimensions (batch_size, height * width * depth)[29].In summary, the 

flatten layer acts as an intermediary stage in neural network architecture, turning 

multidimensional feature maps into a format that can be processed further by fully 

connected layers, allowing for tasks such as classification and regression. 

1.5.3     Dense Layer  

A dense layer, also known as a fully linked layer, is a crucial component of artificial 

neural networks. It is made up of numerous neurons or units organized in a single layer, 

with each neuron linked to every neuron in the previous layer[30]. In a dense layer, 

each neuron receives input from all neurons in the previous layer and generates an 

output that contributes to the inputs of neurons in the next layer. 

1.5.4     Rectified Linear Unit 

The ReLU (Rectified Linear Unit) activation function is a common nonlinear activation 

function in neural networks. It adds non-linearity to the model by setting all negative 

values in the input to zero while keeping positive values constant[31]. 

Graphically, the ReLU function resembles a linear function with the negative portion 

of the input values clipped to zero. It is computationally efficient and helps to solve the 

vanishing gradient problem, making it a popular choice for deep learning models. 

ReLU activation is especially useful in convolutional neural networks (CNNs) and deep 

neural networks (DNNs), where it improves the learning of complicated representations 
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and allows for faster convergence during training than classic activation functions such 

as sigmoid or tanh[32]. 

1.5.5    Dropout Layer 

A dropout layer is a regularization technique used in neural networks to avoid 

overfitting. Overfitting happens when a model learns to memorize training data too 

well, resulting in noise or irrelevant patterns that do not adapt well to new data.  

Overall, dropout layers are an effective strategy for boosting neural networks' 

generalization performance by decreasing overfitting and encouraging the development 

of more robust features [33].They are widely employed in a variety of neural network 

topologies, such as fully connected networks, convolutional neural networks (CNNs), 

and recurrent neural networks. 

1.5.6     Output Layer 

The output layer compares the network's predictions to the ground truth labels and 

calculates the loss function to determine the difference between expected and actual 

values [34].This loss is then utilized to adjust the network's parameters, such as weights 

and biases, via backpropagation and gradient descent optimization. For multiclass 

classification problems, neural networks typically use an output layer with a softmax 

activation function. SoftMax turns the raw output scores of each neuron in the output 

layer into probabilities that accumulate to one, allowing the network's predictions to be 

interpreted as class probabilities [35]. The output layer with SoftMax activation allows 

neural networks to yield class probabilities for multiclass classification problems, 

making it easier to evaluate the model's results. 

1.5.7     Fine Tuning Model  

Fine-tuning a model is the act of modifying a pre-trained neural network's parameters 

(often the weights of specific layers) to adapt it to a new job or dataset [36]. This 

technique is especially beneficial when you have access to a pre-trained model that has 

already been trained on a big dataset (often for a separate but related task) and want to 

apply its learned representations to a new task.Fine-tuning is an effective strategy that 

can save time and computational resources as compared to training a model from start, 

particularly when working with limited data or computer resources[37]. It enables you 
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to tap into the information embedded in pre-trained models and tailor it to your specific 

requirements, resulting in models that perform well on new tasks with less training data 

[38]. 

1.6     Research Background 

An investigation into the classification of ripeness and quality based on tomato fruit 

condition images has recently been undertaken. However, a significant constraint arises 

when poor-quality images confine the capture of tomatoes to a singular angle, thereby 

restricting the comprehensive evaluation of overall fruit condition. The efficacy of such 

assessments is contingent upon the scale and diversity of the dataset, and a dataset 

lacking in these aspects may struggle to encompass the broad spectrum of fruit 

variations. Consequently, limited accuracy and generalizability in the assessment 

process may ensue, with challenges potentially encountered in recognizing rare or 

uncommon fruit types, introducing errors in classification. To mitigate these issues, it 

becomes imperative to curate a comprehensive and diverse dataset, enriched with a 

sufficient scale of data, to ensure the precision and reliability of fruit assessment. The 

task of extracting pixel-level object instance information from images becomes more 

challenging when dealing with complex fruit shapes and overlapping instances. This 

complexity can result in difficulties in accurately segmenting and identifying individual 

fruits, leading to potential errors in the analysis and classification of fruit types. This 

complication hinders the precise determination of individual fruit characteristics within 

a cluster, adding an additional layer of complexity to the tomato detection process. 

Addressing these challenges in dataset diversity and object occlusion is pivotal to 

advancing the accuracy and effectiveness of tomato ripeness and quality classification, 

ultimately contributing to the optimization of agricultural practices in tomato 

cultivation. 

1.7     Problem Statement 

Tomatoes highlight the various applications of deep learning in agriculture, as well as 

their culinary relevance. These algorithms aid in tasks such as plant health monitoring, 

growth optimization, and yield prediction. Deep learning improves crop management 

practices by analyzing large volumes of data, such as soil moisture levels and weather 

patterns, resulting in higher yield and resource efficiency. Tomatoes are also a common 
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element in many different cuisines around the world, valued for their variety and 

nutritional significance. Thus, their dual role emphasizes the junction of technology and 

tradition, demonstrating how advances like as deep learning can transform agriculture 

while still satisfying gastronomic preferences.Temperature, humidity, sun exposure, 

and soil quality are just a few of the variables that affect tomato growth, ripening, and 

quality. Analyzing these parameters traditionally entails labor-intensive, error-prone 

human observation and data collection. The advancement of deep learning algorithms 

has allowed researchers to create methods for the analysis and identification 

of tomatoes that are more effective and accurate. 

1.8       Motivation 

One of the significant benefits of fruit detection research is that it can help automate the 

harvesting process. With automated fruit detection systems, farmers can significantly 

lower their labor costs and increase productivity.  Farmers can enhance harvesting 

efficiency by employing deep learning algorithms to pinpoint ripe fruits in fields instead 

of manual scanning. These algorithms, trained on extensive datasets, automate fruit 

detection, saving time and labor. Such technology ensures timely harvesting, 

minimizing waste and maximizing yield. By integrating these algorithms, farming 

becomes more sustainable, productive, and profitable, benefiting farmers across scales 

while advancing agricultural practices towards greater efficiency and innovation. Deep 

learning technology has allowed researchers to pinpoint areas of fruit that are not 

growing properly, which may help farmers increase crop yield and minimize wastage. 

One of the significant benefits of fruit detection research is that it can help automate the 

harvesting process. With automated fruit detection systems, farmers can significantly 

lower their labor costs and increase productivity. Instead of manually scanning the 

fields for ripe fruits, farmers can rely on deep learning algorithms to identify the exact 

location of the fruits, making the harvesting process faster and more efficient. Deep 

learning technology has allowed researchers to pinpoint areas of fruit that are not 

growing properly, which may help farmers increase crop yield and minimize wastage. 

1.9       Objective of Research 

This research objectives to: 

1. Generate a dataset that incorporates publicly accessible datasets . 
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2. Modify a CNN model (ResNet50V2) to ascertain the quality of tomatoes. 

1.10       Organization of the Thesis 

The subsequent sections of this thesis delineate a structured progression of the inquiry 

into tomato fruit quality identification. Section 2, titled the Literature Review, provides 

a comprehensive overview of previous research on fruit quality identification, focusing 

on image analysis techniques. Moving forward, Section 3 delves into the datasets 

utilized, the features extracted, and the architectural framework implemented in the 

study. The outcomes of our experimentation, organized into three distinct facets of the 

case study, are consolidated and expounded upon in Section 4. Conclusively, Section 5 

encapsulates the culmination of this study, providing a thorough examination of its 

findings, future avenues for research, and the inherent contributions to the broader 

domain of tomato fruit quality identification.
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CHAPTER  2 

Literature Review 

2.1       Introduction 

There are a ton of published research that look into various techniques and algorithms 

for tomato detection.This study's literatue review section provided an overview of the 

body of information while highlighting the various methods and approaches used in to

mato detection.It highlighted any flaws or gaps in the current research and suggests su

bjects for more investigation. 

2.2       Scope of Research 

There has been a lot of interest in the analysis of fruit and vegetable detection content 

in recent years. One of the most important sources of information, besides visual 

inspection, is the use of machine learning algorithms to analyze and interpret data from 

various sensors. These sensors can provide valuable information about the fruit's size, 

color, texture, and even its internal quality parameters, such as sugar content or 

firmness. Researchers have made it simple for farmers to fully comprehend the 

condition of their crop and make well-informed decisions about harvesting, sorting, and 

post-harvest treatments by merging these sensor data with the CNN model's analysis of 

tomato fruit images. The majority of the studies worked on short-scale images, but we 

created a dataset by collecting images from Google Images and existing datasets. This 

dataset allowed us to train our model on a larger and more diverse set of tomato fruit 

images. To improve accuracy, we modified the ResNet50V2 model. 

2.3        Literature Review 

Many researchers have contributed to the development of a system that can detect Fruit 

Detection from images. The following is a content analysis of this research study. An 

essential component of post-harvest procedures in agriculture is the evaluation of fruit 

quality. Conventional techniques, which mostly depend on manual examination, are 

laborious and subjective, which causes inefficiencies and irregularities in the 

assessment process. Research into automated solutions has been prompted by the need 

for a  quick and accurate  way to analyze  the  quality  of fruit, with an emphasis on the
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utilizing cutting-edge technology like deep learning[39].In the historical evolution of 

fruit detection methodologies, early endeavors were grounded in classical machine 

vision techniques, relying on hand-crafted features for the detection and classification 

of fruits. Various approaches, encompassing SVM binary classifiers, pixel-level 

segmentation based on color spaces, and blob-level processing, were explored for the 

identification of tomatoes[40]. However, these methodologies presented inherent 

challenges, such as susceptibility to false positives, imprecise object masks, and 

limitations in accurately pinpointing individual fruit centroids. While recent advances 

have marked a transformative shift in this landscape, the quest for precision and 

sustainability in agricultural practices remains an ongoing pursuit [41].  The research 

focused more on the fruit's look.  

Researchers developed a fuzzy logic method for maturity grading by considering the 

color, size, and form of the tomato fruit [42]. Discussed a cost-effective maturity 

grading system for tomatoes that uses image processing algorithms to identify six key: 

green, breakers, turning, pink, light red, and red stages of ripening[43]. Regarding 

maturity grade detection, a 98% overall accuracy rate was attained. The paradigm shift 

in fruit detection has been notably catalyzed by the integration of deep learning 

technologies, particularly convolutional neural networks (CNN). Diverse CNN 

architectures, including AlexNet, GoogLeNet, VGGNet, and ResNet, have transcended 

various domains, with researchers leveraging these frameworks within plant pathology 

for tasks ranging from creating candidate structures to achieving precise bounding box 

positioning through regression [44].To find flaws in photos of 1200 tomatoes fruit, 

three deep learning models—VGG16, InceptionV3, and ResNet50—were employed. 

Performing better than the others, VGG16 achieved an accuracy of 95.75%–

98.75%.Precision agriculture has emerged as a critical approach for enhancing crop 

yield and resource efficiency [45]. In this study, we investigate the application of 

Convolutional Neural Networks (CNNs) for plant image recognition and classification 

in the context of precision agriculture. The study utilizes a dataset comprising high-

resolution images of various plant species commonly found in agricultural settings[46]. 

Preprocessing techniques are employed to standardize image quality and remove noise, 

followed by feature extraction using CNNs. The CNN model architecture is optimized 

to effectively capture spatial hierarchies and patterns in plant images, facilitating 

accurate classification of different plant species and conditions. We conduct 
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comprehensive experimentation to evaluate the performance of the CNN model in 

terms of accuracy, precision, recall, and F1-score. Additionally, we explore the 

robustness of the model across different environmental conditions, such as variations 

in lighting, weather, and plant growth stages [47]. 

Within the domain of fruit detection, object detection, a pivotal facet of deep learning, 

has garnered attention for its informativeness, albeit with an inherent dependency on 

complex training data. Noteworthy approaches in this context involve region-based 

convolutional neural networks (R-CNNs), such as Fast-RCNN and Faster-RCNN, 

utilizing the selective search method for region proposal detection. Conversely, the You 

Only Look Once (YOLO) detector partitions the image into regions, predicting 

bounding boxes and probabilities for each region, offering speed advantages over 

traditional methods[48]. However, these techniques often encounter challenges in 

conveying pixel-level object instance information, particularly in scenarios involving 

overlapping or occluding objects. As the trajectory of fruit detection advances, striking 

a balance between speed and precision remains a critical pursuit in optimizing 

agricultural practice [49].  

Crop diseases have a significant impact on production, hence their detection and 

identification are critical. Deep learning and intelligent firming can be used to 

automatically identify damaged crops. As part of this research plan, we present highly 

efficient convolution neural network (CNN) architectures for detecting leaf illnesses. 

This project's training and testing steps need the creation of a potato leaf database. CNN 

was used to extract the illness's features from the input photos of the given training 

dataset, allowing the sickness to be categorized. 1700 images of potato leaves were used 

to train the model, followed by 600 photographs for testing. Citrus ailments were 

identified using Convolutional Neural Networks, Deep Learning, base learning, and 

transfer learning [50]. The suggested architecture beats other existing ResNet models 

in terms of accuracy, obtaining a score of 99.62% based on training, testing, and 

experimental results.Current gene regulatory network (GRN) inference approaches are 

renowned for concealing a large number of indirect interactions inside predictions. 

Filtering out indirect connections from direct ones continues to be a significant 

difficulty in GRN reconstruction. To overcome this issue, we devised a redundancy 

silencing and network enhancement technique (RSNET) to infer GRNs. the redundant 

interactions including weak and indirect connections are silenced by recursive 
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optimization adaptively, and the highly dependent nodes are constrained in the model 

to keep the real interactions. This study provides a useful tool for inferring clean 

networks[51].The most crucial crop for both socioeconomic stability and global food 

security is rice. A portion of the global population considers rice to be a staple food, 

however the issue is that all types of rice are plagued by various illnesses and pests. As 

a result, identifying and treating rice plant illnesses is essential to guaranteeing the 

quality of healthy and appropriate rice growth. In order to get the best accuracy, the 

Convolutional Neural Network (CNN) algorithm was used in this study to classify 

diseases on the leaves of rice plants [52]. Several parameters and architecture were 

tested. This study was conducted image classification of rice plant disease using CNN 

architecture ResNet-50V2 with data using preprocessing Augmentation. The test was 

conducted with three optimizers such as SGD, Adam, and RMSprop by combining 

various parameters, namely epoch, batch size, learning rate, and SGD and RMSprop 

optimizers. Division of image data with 70:30 ratio of training data and test data; 80:20; 

90:10. From these results, it was found that Adam was the best optimizer in the 80:20 

data division in this study with an accuracy level of 0.9992, followed by the SGD 

optimizer with an accuracy level of 0.9983, while the RMSProp optimizer was ranked 

third with an accuracy level of 0.9978 [53].There are two fully linked layers and four 

convolution layers in the FASNet model. Our self-development FASNet CNN model 

made use of the pre-trained deep learning models. To reduce the number of parameters 

in the model and the channel depth, the first convolutional layer uses a 1x1 kernel size 

on each pixel as a fully linked connection. The purpose of the dropout layer and early-

stopping class is to restrict the amount of neural connections and avoid overfitting. An 

open-source collection of 6,432 training and testing photos served as the source of the 

dataset for this investigation. As a consequence, our method identified healthy people, 

those with pneumonia, and COVID-19 infected people with 98.48% accuracy. We 

anticipate that the FASNet model can be utilized in future development research to aid 

with COVID-19 diagnosis, based on these encouraging preliminary results. When 

compared to other well-known models like ResNet50V2 and MobileNetV2, the 

FASNet model's output shows a strong correlation[54].In this research, two simple yet 

very effective methods for facial attribute estimation in various image circumstances 

are presented. The suggested methods make use of a quick and simple face alignment 

process for preprocessing, after which they employ the lightweight Convolutional 

Neural Network (CNN) architectures MobileNetV2 and Nasnet-Mobile to predict facial 
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features. When it comes to accuracy and processing speed, both models perform 

similarly.Our suggested technique outperforms the top state-of-the-art model in 

processing speed and outperforms the fastest existing model in accuracy, according to 

a rigorous comparative evaluation against state-of-the-art methodologies concerning 

both processing time and accuracy. Moreover, our approach is intuitive and well-suited 

for mobile device implementation. To summarize, this study introduces two novel 

techniques for estimating facial attributes in images, showcasing their simplicity, 

effectiveness, and efficiency. By leveraging fast face alignment techniques and 

lightweight CNN architectures, we achieve competitive performance in accuracy and 

speed. Our method outperforms existing models in both metrics, making it particularly 

suitable for real-time applications and mobile deployment[55]. 

To improve the precision of domestic industrial defect detection, this research suggests 

a Two-Stage Industrial Defect Detection Framework. The Optimized-Inception-

ResnetV2 and Improved-YOLOv5 models, each of which serves a distinct purpose of 

defect classification and location, form the foundation of the system [56]. There are 

improvements made to YOLOv5's multiscale detection layer, feature scales, and 

backbone network in order to increase the first-stage recognition's efficacy in detecting 

small flaws with high similarity on steel surfaces. Furthermore, the convolutional block 

attention module (CBAM) is integrated into the Inception-ResnetV2 model in the 

second stage of recognition, which is succeeded by network architecture and loss 

function optimizations. Several datasets, such as Pascal VOC2007, NEU-DET, and 

Enriched-NEU-DET, are used in comparative tests, which show notable gains in testing 

outcomes. With an AUBO-i5 robot with an Intel RealSense D435 camera, the two-stage 

framework achieves a mean average precision (mAP) of 91.0% in real industrial 

situations and 83.3% on the Enriched-NEU-DET dataset. This demonstrates the 

framework's superiority and versatility in the identification of industrial 

defects[57].Computer vision-based scene classification technology is widely used in 

many different fields. Nevertheless, many current computers vision classification 

models find it difficult to keep up with the demands of modern scene categorization 

jobs as images get more complex. These responsibilities require considering several 

interrelationships inside the image in addition to objects, backdrops, and spatial layouts 

[58]. In order to handle complicated scene classification difficulties, this study proposes 

an approach that improves dataset processing by analyzing existing scene classification 
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algorithms in conjunction with the Xception model. A serialized image improvement 

technique is used to increase the size of the dataset and magnify picture features by 

using image enhancement technologies.By utilizing the Xception model, the method 

collects information from images and produces a more robust scene categorization 

model. Results from experiments show how well the Xception model performs scene 

categorization tasks, making up for the shortcomings of classic Convolutional Neural 

Networks(CNN) models in terms of feature extraction and generalization capacity [59]. 

This method presents a pre-trained Convolutional Neural Network (CNN) model 

specifically intended to identify benign or malignant pre-segmented breast cancer 

masses in mammography pictures. Through meticulous investigation and analysis, the 

system employs various methods to address the challenge of limited training data. 

These methods include data augmentation, which artificially expands the dataset by 

generating modified versions of existing data points. Targeted pre-processing 

techniques are also utilized to enhance the quality and relevance of the input data [60]. 

Additionally, transfer learning is leveraged to transfer knowledge from a pre-trained 

model to the current task, enabling the network to benefit from features learned on a 

larger dataset. By integrating these approaches, the system effectively mitigates the 

limitations posed by small training datasets, improving the model's robustness and 

performance [61]. The system is based on a modified DENSENET201 architecture that 

has undergone extensive training and testing to overcome categorization difficulties. 

Data from the RGB color model, which includes 2480 benign and 5429 malignant 

instances, is used to train the CNN model. The findings show a 97% accuracy rate, with 

99% precision rates for benign cases and 83% precision rates for malignant cases. For 

benign instances, the recall rates are 83%, while for malignant situations, they are 99%. 

In general, the accuracy of the provided DENSENET201  model is  better than   that of 

earlier  approaches  for this system[62].In comparison to earlier models, this research 

presents EfficientNetV2, a unique family of convolutional networks that is intended to 

increase training time and parameter efficiency. These models are created by combining 

scaling and training-aware neural architecture search to concurrently maximize 

parameter efficiency and training speed. New techniques like Fused-MBConv broaden 

the search space for these models [63]. Results from experiments show that 

EfficientNetV2 models can be up to 6.8 times smaller and train substantially faster than 

state-of-the-art models. An improved progressive learning strategy that dynamically 

modifies regularization methods like data augmentation in tandem with picture size is 
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suggested as a solution to this accuracy decline. EfficientNetV2 models perform better 

with progressive learning than earlier models on datasets including ImageNet, CIFAR, 

Cars, and Flowers [64]. EfficientNetV2 outperforms more contemporary models like 

ViT by 2.0% accuracy on the ImageNet ILSVRC2012 dataset after pretraining on the 

ImageNet21k dataset. This is achieved while training 5 to 11 times quicker with the 

same computational power [65].The purpose of this study is to introduce a deep 

learning approach to traffic sign recognition, with a focus on identification and 

classification. Using the ResNet-50, VGG16, RegNetX002, and DenseNet121 models, 

the study uses transfer learning. Transfer learning is the process of extracting 

characteristics from images using pre-trained models and then training a new model for 

detection. Each transfer learning model's accuracy rates are calculated using the Traffic 

Signs dataset, which contains 162 more special classes in addition to the GTSRB 

dataset [65].Diagnosing defects in electric motors is critical for the industrial sector 

because of the potential losses caused by equipment downtime. This study addresses 

the issues associated with the quality and amount of motor data by offering an 

intelligent failure detection model based on Deep Transfer Learning (DTL) and 

InfraRed Thermal (IRT) pictures. A In addition to the modified ResNet architecture, a 

cropping layer is incorporated into the network to identify regions of interest [67]. This 

layer facilitates focusing on specific areas within the input data. Subsequently, 

hyperparameter optimization is conducted using Random Search (RS). RS 

systematically explores a predefined hyperparameter space to identify the combination 

that yields optimal performance [68]. By integrating these components, the network 

becomes adept at identifying and processing relevant regions within the input, while 

the hyperparameter optimization ensures that the model's parameters are fine-tuned for 

improved performance on the given task. cropping layer is also added to the network to 

designate regions of interest, followed by hyperparameter optimization via Random 

Search (RS) . The results show that the RegNetX002 model performs well in fault 

classification, with an accuracy of 98.18% in 3245 seconds. Overall, tests applying deep 

transfer learning demonstrate significant potential for adapting to machinery failure 

diagnosis, particularly when leveraging Infrared Thermal data [69] . 

Action recognition plays a pivotal role in computer vision, yet current models come 

with significant computational overhead, limiting their deployment on mobile devices 

for real-world applications. of real-time action recognition, distinct from traditional 
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inference settings. Results show that  models, which have a 6x speed gain while 

preserving comparable accuracy to cutting-edge techniques, can efficiently meet real-

time requirements on mobile devices. Notably, this research is the first attempt to 

implement current deep learning action recognition models on mobile devices, paving 

the path for widespread use in real-world applications [70]. 

TABLE 2.1 KEY FINDINGS OF THE PREVIOUS LITERATURE 

Author and year Title Method

s/Algori

thms 

Findings 

Ibrahim, Nehad M., 

Dalia Goda Ibrahim 

Gabr, Atta-ur Rahman, 

Sujata Dash, and Anand 

Nayyar [71]. 

 

81, no. 19 (2022): 

pp.27783-27798. 

 

A deep learning 

approach to 

intelligent fruit 

identification 

and family 

classification 

CNN This study developed a 

deep learning model using 

fruit photos from 52 species 

across four families for fruit 

identification. The model 

achieved a 93% prediction 

success rate and 99.82% 

accuracy for testing and 

training. 

Ünal, Haci Bayram, 

Ebru Vural, Burcu Kir 

Savaş, and Yaşar 

Becerikli [72]. 

 

pp. 1-5, 

 IEEE ,2020. 

Fruit recognition 

and 

classification 

with deep 

learning support 

on embedded 

system (fruitnet). 

ConNN, 

Image 

Processi

ng 

Method 

The proposed study uses 

image processing methods 

to classify fruits, reducing 

time, cost, and labor losses.  

A Convolutional Neural 

Networks (nNN) deep 

learning model is 

developed on the Keras 

platform. The model is 

tested on 20 different fruits 

in two data sets, and finally 

on a Jetson Nano card in 

real time 

Gill, Harmandeep 

Singh, Osamah Ibrahim 

Khalaf, Youseef 

Alotaibi, Saleh 

Alghamdi, and Fawaz 

Alassery 

[73]. 
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Multi-Model 

CNN-RNN-

LSTM Based 

Fruit 

Recognition and 

Classification 

CNN, 

RNN, 

LSTM 

The deep learning 

algorithm ensemble for 

fruit categorization is 

proposed in this research.  

The suggested strategy 

performs better than the 

current methods in terms of 

accuracy analysis and F-

measure, according to 

experiments conducted on 

ten photos of fruit. 
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Septiarini, Anindita, 

Hamdani Hamdani, 

Sri Ulan Sari, Heliza 

Rahmania Hatta, 

Novianti Puspitasari, 

and Wiwien 

Hadikurniawati [74]. 

  

pp. 92-96.  

IEEE, 2022. 

Image Processing 

Techniques For 

Tomato 

Segmentation 

Applying K-Means 

Clustering and 

Edge Detection 

Approach. 

K-

means 

clusteri

ng , 

HSV, 

Canny 

operat

or. 

With an emphasis on region 

of interest identification, 

pre-processing, 

segmentation, and post-

processing, this work 

presents a tomato 

segmentation approach for 

plantation fields.  The 

performance evaluation 

revealed segmentation 

accuracy averages of 2.74%, 

4.77%, and 91.43%. 

Sudharshan, Duth P., 

and T. N. Jhansy 

[75]. 

 

 

pp. 1-6.  

IEEE, 2022. 

Tomato Fruits 

Disease Detection 

Using Image 

Processing. 

Enhan

ced 

SVM 

In farming, computer 

learning techniques reduce 

labor costs and optimize 

harvest activities by 

improving fruit recognition 

and classification. 

Experimental data indicates 

that 94.036 percent of 

diseases can be diagnosed 

accurately using these 

techniques. 

Mureşan, Horea-

Bogdan  [76]. 

 

 

pp. 103-107. 

 IEEE, 2022. 

An Automated 

Algorithm for Fruit 

Image Dataset 

Building. 

single 

shot 

multib

ox 

detecto

r 

The paper 

presents an algorithm that 

generates annotation files 

for bounding boxes around 

fruits using pictures from the 

Fruits-360 collection. The 

method minimizes the 

necessity for gathering data 

in the actual world by 

considering differences in 

illumination and occlusion 

in outdoor settings. The 

trained model outperformed 

other innovative models, 

with a mean average 

accuracy of 0.750. 

Legaspi, Jericho, 

John Raphael 

Pangilinan, and Noel 

Linsangan [77]. 

 

 

 pp. 613-618. IEEE, 

2022. 

Tomato Ripeness 

and Size 

Classification 

Using Image 

Processing. 

Raspbe

rry Pi, 

Raspbe

rry 

Camer

a v1.3, 

Ultraso

nic 

sensor,  

 

The study created an image 

processing system to 

categorize the size and 

maturity of tomatoes. The 

system's accuracy score for 

classifying ripeness was 

92.86%, while its accuracy 

score for classifying size 

was 96%. 



 

20 

 

Tunio, Muhammad 

Hanif, Li Jianping, 

Muhammad Hassaan 

Farooq Butt, Imran 

Memon, and Yumna 

Magsi[78].  

 

 

pp. 1-5. IEEE, 2022. 

Fruit Detection and 

Segmentation 

UsingCustomized 

Deep Learning 

Techniques 

U-Net 

archite

cture 

With the contraction path 

encoding characteristics U-

Net architecture and the 

expansion path decoding 

resolution, the approach 

employs segmentation to 

discover and locate objects. 

For an enhanced crop, the 

model projects accuracy and 

test image loss of 98.66% 

and 0.0268%, respectively. 

Nagesh, A. 

Seetharam, and G. N. 

Balaji [79]. 

 

 

vol. 1, pp. 1-6. IEEE, 

2022. 

Deep Learning 

Approach for 

Recognition and 

Classification of 

Tomato Fruit 

Diseases. 

VGG1

6 

This research suggests a 

convolutional neural 

network-based technique for 

tomato disease detection in 

color photos. The technique 

demonstrates effective 

prediction and early 

detection of tomato illnesses 

by using an augmentation 

strategy to build a dataset 

with big samples. 

Azman, Nur Fitrah, 

Nor Ashikin 

Mohamad Kamal, 

and Norizan Mat 

Diah [80]. 

 

 

pp. 119-124. 

 IEEE, 2023. 

Tomato Fruit 

Ripening 

Classification 

Using Wavelet-

Based Feature 

Extraction and 

Multilayer 

Perceptron. 

DWT,

MLP 

This study aimed to 

accurately classify a diverse 

range of data samples using 

the combination of discrete 

wavelet transform and 

multilayer perceptron 

classifiers. The achieved 

accuracy of 81% 

demonstrates the 

effectiveness of this 

approach in accurately 

categorizing the data. 

 

Hong, Suk-Ju, 

Seongmin Park, 

Chang-Hyup Lee, 

Sungjay Kim, 

Seung-Woo Roh, 

Nandita Irsaulul 

Nurhisna, and 

Ghiseok Kim [81]. 

 

 

IEEE Access (2023). 

Application of X-

ray imaging and 

convolutional 

neural networks in 

the prediction of 

tomato seed 

viability. 

CNN Based on X-ray scans, 

models were constructed in 

this work to evaluate tomato 

seed viability. The models 

were evaluated for structural 

integrity once they were in 

the seedling stage.The 

CNN-based model had a 

greater accuracy of 86.01% 

in comparison to the image-

processing-based model, 

indicating its possible 

application in determining 

the viability of tomato seeds. 
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Kushwaha, Arvinda 

[82]. 

 

 

pp. 1-5.  

IEEE, 2023. 

Fruit Classification 

Using Optimized 

CNN. 

CNN The study demonstrated the 

effectiveness of CNN 

technology in fruit 

classification, with a 

TensorFlow backend model 

achieving 96.88% accuracy 

after 40 training epochs, 

demonstrating the practical 

viability of such approaches 

in real-world applications. 

 

Mehta, Shiva, Vinay 

Kukreja, and Rishika 

Yadav[83]. 

 

 

pp. 309-314. 

 IEEE, 2023. 

A Federated 

Learning CNN 

Approach for 

Tomato Leaf 

Disease with 

Severity Analysis. 

CNN The study classifies and 

detects tomato leaf 

infections into five severity 

categories using a CNN 

model with federated 

learning. With an accuracy 

range of 96% to 98%, the 

model regularly produces 

excellent results. The model 

has the highest recall when it 

comes to class 5 (illness 4), 

indicating that agricultural 

settings might benefit from 

its use. 

 

Saini, Archana, 

Kalpna Guleria, and 

Shagun Sharma[84] . 

 

 

 

pp. 01-06. 

 IEEE, 2023. 

Tomato Leaf 

Disease 

Classification 

using 

Convolutional 

Neural Network 

Model. 

CNN Tomato leaf diseases were 

identified and categorized 

using Convolutional Neural 

Networks (CNNs), a deep 

learning technique. The 

model was developed using 

Adam and the SGD 

optimizer, and the dataset 

was sourced from Kaggle. 

With a loss value of 0.0044 

and an accuracy of 0.9966, 

the CNN model performed 

well. 

 

Singh, Utpal Kant, 

Rajnish Kumar, 

Saurabh Kumar, 

Shibasish Kar, and 

Santos Kumar 

Baliarsingh. [85]. 

 

pp. 1-6. 

 IEEE, 2023. 

Detection of 

Diseases in 

Tomato Plants 

using 

Convolutional 

Neural Network. 

CNN Their study, produced an 

average classification 

accuracy of 82.4%, 

demonstrating how these 

cutting-edge approaches 

may perform better than 

conventional ones. 
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Roy, Kyamelia, 

Sheli Sinha 

Chaudhuri, Jaroslav 

Frnda, Srijita 

Bandopadhyay, 

Ishan Jyoti Ray, 

Soumen Banerjee, 

and Jan Nedoma. 

[86].  

 

IEEE Access  

11 (2023):  

14983-15001. 

Detection of 

tomato leaf 

diseases for agro-

based industries 

using novel PCA 

DeepNet. 

F-

RCNN

, 

GAN, 

PCA 

DeepN

et 

The system integrates 

Generative Adversarial 

Network (GAN) and a 

customized Deep Neural 

Network (PCA DeepNet) 

with Principal Component 

Analysis (PCA).The 

findings indicate an average 

precision of 98.55% and a 

classification accuracy of 

99.60%. 

Hsieh TH, Kiang JF 

[87]. 

Sensors 20, no. 6 

(2020): 1734. 

Comparison of 

CNN algorithms 

on hyperspectral 

image 

classification in 

agricultural lands. 

CNN The HSI data of a crop 

agriculture in Salinas Valley 

and a mixed vegetation 

agriculture in Indian Pines 

were used to compare the 

performance of these CNN 

algorithms. The highest 

overall accuracy on these 

two cases are 99.8% and 

98.1%,  

Yalcin H, Razavi S 

[88]. 

 

 

 

 

 

 

 

 

In 2016 Fifth 

International 

Conference on Agro-

Geoinformatics 

2016 

Plant classification 

using 

convolutional 

neural networks.  

CNN Convolutional Neural 

Networks (CNNs) have 

shown remarkable success 

in image classification tasks, 

including plant species 

identification. In this study, 

we explore the effectiveness 

of CNNs for plant 

classification using a 

comprehensive dataset of 

plant images. We propose a 

CNN architecture tailored 

for plant classification, 

leveraging transfer learning 

and data augmentation 

techniques. 

Kayabasi A, Toktas 

A[89]. 

 

 

 

Neural Network 

World 28.3 (2018) 

Automatic 

classification of 

agricultural grains: 

Comparison of 

neural networks 

ANN 

 

it would be exciting if the 

models can accumulate 

knowledge to handle 

continual tasks. Towards 

this goal, we propose an 

ANN-based continual 

classification method via 

memory storage and 

retrieval, with two clear 

advantages: Few data and 

high flexibility. This 
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proposed ANN-based model 

combines a convolutional 

neural network (CNN) and 

generative adversarial 

network (GAN). 

Kujawa S, Niedbała 

G 

[90]. 

 

PP-497 

Artificial neural 

networks in 

agriculture 

ANN Artificial neural networks 

are one of the most 

important elements of 

machine learning and 

artificial intelligence. They 

are inspired by the human 

brain structure and function 

as if they are based on 

interconnected nodes in 

which simple processing 

operations take place.  

Gupta A, Nahar P 

[91]. 

 

 

PP10235-10244 

Journal of Ambient 

Intelligence and 

Humanized 

Computing  

Classification and 

yield prediction in 

smart agriculture 

system using IoT 

ML Machine learning (ML) 

methods achieve the 

requirement of scaling the 

learning performance of the 

model. This paper 

introduces a hybrid ML 

model with IoT for yield 

prediction. This work 

involves three phases : 

preprocessing, feature 

selection(FS) and 

classification. Initially, the 

dataset is preprocessed, and 

FS is done on the basis of 

Correlation based FS 

(CBFS) and the Variance 

Inflation Factor algorithm 

(VIF). Finally, a two-tier 

ML model is proposed for 

IoT based smart agriculture 

system. 

Saad AM, Abu-

Naser SS[92]. 

 

2023 

Rice Classification 

using ANN 

ANN Rice classification plays a 

vital role in ensuring food 

security and quality control. 

In this study, we propose an 

approach utilizing Artificial 

Neural Networks (ANN) for 

the automated classification 

of rice grains based on their 

varieties. The dataset 

comprises high-resolution 

images of different rice 

varieties obtained from 

various sources.  
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Panthakkan A, Anzar 

SM, Jamal S 

[93]. 

Concatenated 

Xception-

ResNet50—A 

novel hybrid 

approach for 

accurate skin 

cancer prediction. 

ResNet

50 

The suggested approach's 

performance is contrasted 

with that of a Deep CNN and 

other cutting-edge transfer 

learning models. The 

performance of the 

recommended technique is 

evaluated using the Human 

Against Machine 

(HAM10000) dataset. 10,500 

skin photos were used in this 

investigation. The sliding 

window method is used to test 

and train the model. With a 

97.8% prediction accuracy, 

the concatenated X-R50 

model that has been 

suggested is state-of-the-art. 

Table 2.1 provides an overview of the major conclusions drawn from the prior research. 

There is always room for more research in every new piece. After evaluating all the 

information, we were able to determine the viability of our system and research. 

2.4       SUMMARY 

The literature study identifies a new trend in the assessment of fruit quality in 

agricultural contexts through the application of deep learning techniques. There is a 

significant gap in the application of these technologies to tomatoes, despite the fact that 

a great deal of study has been done on the general detection of fruit problems. By 

providing a focused examination of deep learning-based methods for identifying and 

evaluating tomato fruit condition, this paper seeks to close this gap.Tomatoes present 

unique challenges in terms of their diverse shapes, sizes, and susceptibility to various 

conditions affecting their quality. The paper underscores the need for specialized 

methodologies tailored to address these challenges, emphasizing the importance of a 

dedicated exploration into the realm of tomato fruit condition detection. 

By exploring the intricacies of deep learning applications for tomatoes, the study makes 

a substantial literary contribution. It not only recognizes the wider interest in applying 

deep learning to agriculture, but it also focuses specifically on the particular field of 

tomato fruit quality evaluation. The objective is to improve the comprehension and 

usefulness of deep learning methods in handling the complexities related to tomato 

fruits, which are not only abundant but also multipurpose. It not only recognizes the 
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wider interest in applying deep learning to agriculture, but it also focuses specifically 

on the field of tomato fruit quality evaluation. The objective is to improve the 

comprehension and usefulness of deep learning methods in handling the complexities 

related to tomato fruits, which are not only abundant but also multipurpose. This 

dedicated exploration is poised to advance the field by providing insights into the 

nuances of tomato fruit condition detection, paving the way for more accurate and 

efficient methods. As agriculture increasingly adopts technological advancements, the 

paper seeks to bridge the gap between general fruit quality assessment and the unique 

characteristics of tomatoes.   
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CHAPTER 3 

Methodology 

3.1        Introduction 

I provided short reports on the identification and functioning of Tomato detection at 

various stages of the procedure in this part. 

3.2        Methodology 

Recent investigations have specifically delved into the efficacy of employing deep 

learning methodologies for the tracking and analysis of fruit. The utilization of 

computer vision or deep learning in scrutinizing images or videos of fruit quality 

introduces a novel dimension to the assessment of quality severity. The CNN transfer 

learning technique facilitates the acceleration of training and the utilization of pre-

trained weights. This approach optimizes the use of available data by reutilizing weights 

acquired from prior tasks. Moreover, the performance of CNNs can be enhanced 

through adjustments to the learning rate and the adoption of various optimization 

algorithms, such as stochastic gradient descent or momentum-based techniques. 

Addressing this challenge, we employ an adapted CNN transfer learning method 

tailored for the precise identification of tomato events in images depicting tomato 

quality. This method amalgamates the advantages of transfer learning with specific 

modifications customized for the task of tomato event identification. Not only does this 

modified CNN transfer learning method enhance training efficiency, but it also elevates 

the overall performance of tomato event classification, establishing it as a valuable tool 

for agricultural applications and crop management. To further refine the accuracy of 

the deep learning-based approach, this paper advocates for a set of strategies, including 

the amalgamation of data from diverse sources, the utilization of multi-resolution input, 

and the selection of optimal hyperparameters.  

The proposed methodology focuses on employing a deep learning-based modified 

ResNet50V2 Convolutional Neural Network (CNN) with transfer learning to conduct 

comprehensive analysis of diverse imagery, indicating a robust approach for extracting 

meaningful insights from varied visual data sources. The approach enhances 
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comprehensive image analysis capabilities, showcasing versatility in understanding and 

interpreting visual data across various domains.  

3.3        Research Activity 

In this section, we detail the comprehensive process undertaken in my study, 

encompassing the collection and annotation of data, the architecture of our deep 

learning model, and the subsequent training and testing phases. The primary 

contribution of our work lies in the meticulous compilation of a diverse dataset 

featuring tomato imagery, systematically labeled with corresponding classes, fostering 

an extensive range of tomato conditions The dataset creates a solid basis for training 

and testing our suggested deep learning model by combining photos from various 

sources. This varied compilation adds to the overall robustness of the model by 

improving its performance and adaptability in various settings. Notably, our manual 

labeling process enhances the precision of classification. I chosen approach involves 

the utilization of a modified ResNet50V2 classifier, a decision substantiated by its 

ability to yield notably more accurate predictions. To elucidate the entire process, we 

provide a comprehensive workflow diagram (Figure 3.1) and a Flow chart (Figure 3.2) 

of our model that offers both a detailed explanation and a visual representation of my 

tomato detection system.  

Figure 3.1:Workflow Diagram of our Research



 

28 

 

Figure 3.2: Flow chart of proposed CNN model 

3.3.1      Dataset generation 

To train and assess the efficacy of our tomato condition detection model, I curated a 

comprehensive dataset sourced from multiple channels to ensure diversity and 

inclusivity. This dataset comprises a total of 3345 images gathered from reputable 
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platforms such as Kaggle, Mendeley Data[94], and other organizations specializing in 

agricultural imagery. By amalgamating datasets from various sources, my goal was to 

encompass a broad spectrum of tomato conditions, thereby facilitating a robust training 

process. The largest contribution to our dataset comes from a collection of 2036 images 

sourced from Kaggle. To maintain a balanced representation of tomato classifications 

and avoid redundancy[95], some images were selectively omitted. The labeling process 

involved categorizing tomatoes into four distinct classes, representing conditions such 

as damages, maturity levels, ripeness, and unripens. This meticulous labeling ensures 

that the model can discern nuanced differences in tomato conditions accurately. 

Additionally, Figure 3.3 provides a visual representation of the labeled images within 

the Tomatoes Dataset, aiding in the comprehension of my dataset's composition and 

organization. 

 

Figure 3.3: Example of Tomatoes Dataset. 

3.3.2     Data Pre-processing 

To evaluate the performance of our model,I utilized a dataset partitioned into training 

(comprising over 62.3%), validation (20.6%), and testing (less than 17.1%) sets. Prior 

to training, preprocessing steps were implemented, which included resizing the images 

to dimensions of (224, 224) and normalizing the RGB channels using mean and 

standard deviations obtained from the ImageNet dataset. This normalization technique 
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transformed pixel values from the original range of 0 to 255 to a normalized range of 0 

to 1, ensuring uniformity in the input data and promoting convergence during the 

training phase. Additionally, the use of the ImageNet dataset for normalization serves 

to enhance the model's generalization capabilities by aligning the data distribution with 

a widely used benchmark dataset. Facilitating convergence during the training process. 

Figure 3.4: Split Data of Tomatoes Dataset 

Figure 3.5: Sample Images in Tomatoes Dataset 

3.3.3     Data Augmentation 

In addition to utilizing various picture augmentation methods  like  random    flipping, 
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contrasting, and rotating, we implemented strategies to ensure a well-balanced dataset, 

crucial for robust model training. These techniques not only diversified the dataset but 

also promoted resilience in the face of varied real-world scenarios. Following the 

augmentation process, I employed a modified convolutional neural network (CNN) to 

classify the images. This holistic approach aimed to bolster the model's ability to 

generalize and recognize patterns effectively, thereby improving its overall efficacy in 

object categorization tasks. Moreover, by integrating augmentation techniques into the 

training pipeline, I aimed to mitigate overfitting and enhance the model's adaptability 

to unseen data, ultimately fostering greater performance and reliability in practical 

applications. Here are some augmented images showing below: 

 

Figure 3.6: Augmented Image in Tomatoes Dataset 

3.3.4     Modified ResNet Architecture  

These modifications might include variations in the number of layers, introduction of 

new layers or modules, changes in activation functions, or the addition of attention 

mechanisms, among others.   

3.3.5      ResNet Architecture Overview 

The ResNet architecture is renowned for its distinctive structure, featuring multiple 

residual stages, each composed of several residual blocks. Within these blocks, two 
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convolutional layers are stacked, each followed by ReLU activation functions and batch 

normalization layers. However, what truly sets ResNet apart is its ingenious solution to 

the vanishing gradient problem. By incorporating identity shortcut connections, also 

known as skip connections, ResNet facilitates the smooth flow of gradients during 

training. These shortcut links enable the network to bypass one or more layers, allowing 

gradients to propagate more effectively through the network. This innovative design 

not only addresses the issue of vanishing gradients but also contributes to the model's 

ability to train deeper architectures without degradation in performance. 

3.3.6     Modification for Improved Performance 

In my quest to refine the original ResNet architecture, my primary focus was on 

fortifying its capabilities through the strategic introduction of skip connections. This 

augmentation entails integrating shortcut links within the architecture, which play a 

pivotal role in smoothing the flow of gradients during the training process. By 

enhancing gradient propagation, this modification fundamentally contributes to an 

overarching enhancement in performance and training efficiency, particularly within 

the ResNet50V2 framework. The incorporation of skip connections addresses a 

fundamental challenge in deep neural network training: the vanishing gradient problem. 

By enabling the direct flow of gradients through the network, skip connections 

effectively mitigate the issue of diminishing gradient magnitudes, thereby fostering 

more effective and stable training dynamics. This not only expedites convergence 

during training but also enhances the model's ability to capture intricate patterns and 

nuances within the data. Moreover, the introduction of skip connections serves to 

augment the model's depth without exacerbating the optimization difficulties typically 

associated with deeper networks. This enables ResNet50V2 to leverage its increased 

capacity for feature representation, leading to superior performance in tasks such as 

image classification, object detection, and semantic segmentation. 

Furthermore, the strategic incorporation of skip connections aligns with broader trends 

in deep learning research, which increasingly emphasize the importance of architectural 

design in optimizing model performance. By carefully engineering the connectivity 

patterns within the network, we aim to harness the full potential of ResNet50V2, 

unlocking new levels of performance and efficiency in complex computational tasks. 

This approach reflects a shift towards more thoughtful and deliberate architectural 
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choices, recognizing that model design plays a crucial role in determining overall 

effectiveness. The deliberate integration of skip connections represents a pivotal 

advancement in refining the ResNet architecture, marking a significant stride towards 

achieving state-of-the-art performance in deep learning-based image analysis and 

classification tasks. This architectural enhancement underscores our commitment to 

pushing the boundaries of model efficacy and advancing the field of computer vision. 

As we continue to explore novel architectural innovations and optimization techniques, 

we are poised to further enhance the capabilities of ResNet and contribute to the 

ongoing evolution of deep learning methodologies. 

In the development of my customized ResNet50V2 variant, I implemented specific 

alterations to the architecture to tailor it to our specific task. Firstly, I removed the top 

layer and replaced it with a sequential model comprising three new layers. This 

restructuring allowed us to take a more focused approach to feature extraction, ensuring 

that the model learns relevant patterns from the input data more effectively. 

Subsequently, we introduced a dense layer equipped with 800 neurons, accompanied 

by a ReLU activation layer. This adjustment was carefully designed to enhance the 

model's capability to extract meaningful features from the input data, enabling it to 

capture and represent essential information more accurately. To mitigate the risk of 

overfitting and ensure the model's generalization ability, I incorporated a dropout layer. 

This regularization technique helps prevent the model from memorizing noise in the 

training data, promoting better performance on unseen instances during inference.  

The final layer in my modified architecture is an output layer featuring a softmax 

activation function. This crucial component plays a pivotal role in generating 

probability distributions over the target classes, enabling the model to make informed 

predictions with confidence. Furthermore, to provide a comprehensive understanding 

of these architectural modifications and their impact on model performance, we include 

a detailed illustration in the form of a figure. This visual aid serves to elucidate the 

intricacies of my customized ResNet50V2 architecture, allowing for easier 

comprehension and assessment of the model's design and functionality. The following 

Figure 3.7 depicts the architecture of the Frozen Layer of ResNet50V2, highlighting 

the structural changes implemented to optimize the model for my specific task. These 

changes are tailored to optimize the model's functionality and efficiency in addressing 
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the specified objective, indicating a targeted approach to adapting the ResNet50V2 

architecture for improved task-specific performance. 

 

Figure 3.7: Frozen Layer of ResNet50V2 Architecture 
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Figure3.8: Modified ResNet50V2 Architecture 

In Figures 3.8 and 3.9, I present the upgraded ResNet50V2 model, which incorporates 

a newly integrated flattening layer aimed at expediting data processing. This 

architectural refinement is strategically designed to enhance information propagation 

within the network by optimizing data transfer and processing efficiency. By 

implementing this modification, my goal is to elevate the model's performance and 

augment its capacity for comprehending intricate patterns embedded within the neural 

network's layers. The introduction of the flattening layer serves a crucial role in 

streamlining the transformation of multidimensional data into a one-dimensional 

format. This process facilitates smoother data flow throughout the network, thereby 

enhancing the model's efficacy in extracting significant features from the input data. By 

simplifying the data representation process, the flattening layer enables the model to 

more efficiently capture and analyze complex information, ultimately leading to 

improved performance in various tasks, especially those demanding intricate pattern 

recognition, such as image classification. The integration of the flattening layer 

underscores our commitment to optimizing the ResNet50V2 model for real-world 

applications. By enhancing the model's ability to discern subtle variations and intricate 
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details within the data, I aim to ensure more accurate classification outcomes across a 

wide range of tasks and scenarios. This enhancement not only bolsters the model's 

performance but also enhances its versatility and applicability in diverse domains, 

further solidifying its position as a powerful tool in the realm of deep learning-based 

image analysis and classification. 

Moreover, the inclusion of the flattening layer contributes significantly to the model's 

versatility and adaptability across diverse datasets and applications. By simplifying the 

data representation process, the model becomes more proficient at handling varying 

input formats and extracting relevant features, thereby enhancing its performance in 

real-world scenarios. This architectural refinement reflects a strategic endeavor to 

optimize the ResNet50V2 model for enhanced performance and efficacy in tackling 

complex computational tasks, ultimately driving advancements in the state-of-the-art 

of deep learning-based image analysis and classification. The redesigned architecture 

is anticipated to enhance the model's ability to capture and leverage complex data 

patterns, resulting in improved performance across tasks such as picture categorization 

and pattern recognition. The additional layers depicted in Figure 3.9 contribute to 

processing efficiency. Specifically, the flattening layer serves as a conduit, converting 

multidimensional arrays into one-dimensional representations, thereby facilitating 

seamless data integration into subsequent layers. This transformation optimizes the 

network's capacity to extract relevant features from input data, thereby bolstering 

overall performance. These modifications are aimed at enhancing the network's ability 

to extract pertinent features from input data, ultimately aimed at improving the model's 

performance. The overarching objective of these alterations is to empower the model 

to effectively analyze and learn intricate patterns within the dataset, thereby enhancing 

its ability to make accurate predictions or classifications. This deliberate approach is 

intended to refine the model's understanding and representation of complex data 

structures, thus enhancing its proficiency across a wide range of image analysis tasks 

and contributing to advancements in the field of deep learning-based image processing. 

The improved ResNet50V2 model stands as a noteworthy breakthrough in the realm of 

deep learning architecture, characterized by a meticulously crafted balance between 

complexity and computing efficiency. Through deliberate modifications to its 

architecture, researchers aim to not only enhance the model's performance but also 

ensure the optimal utilization of computational resources. This iterative refinement 
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process plays a crucial role in empowering the model to effectively capture and leverage 

subtle patterns inherent in the data, thereby enhancing its predictive capabilities across 

a myriad of applications. Beyond mere performance enhancement, the architectural 

enhancements introduced in the ResNet50V2 model are poised to elevate its overall 

functionality and versatility. By bolstering the model's capability to handle diverse and 

intricate data structures, researchers aspire to expand its applicability across a broad 

spectrum of tasks and datasets. This upgrade is geared towards enhancing the model's 

adaptability to various tasks and datasets by fine-tuning its design to better 

accommodate complex data patterns. The strategic modifications made to the model's 

architecture are strategically aimed at augmenting its capacity to discern and leverage 

complex data features, thereby improving its performance and versatility across diverse 

applications. These adjustments empower the model to thrive in varied settings by 

adeptly adapting to the nuances present in different datasets and scenarios. Through the 

refinement of both the architecture and training procedures, researchers seek to 

optimize the model's efficacy in recognizing intricate patterns within the data. By 

meticulously adjusting the architecture and fine-tuning the training procedures, 

researchers aim to enhance the model's ability to capture subtle variations and complex 

relationships present in the data. These enhancements enable the model to consistently 

deliver robust performance across a wide spectrum of tasks and scenarios, ranging from 

image classification and object detection to natural language processing and beyond. 

The iterative refinement process ensures that the model remains adaptable and capable 

of handling the diverse challenges posed by real-world applications, thereby reinforcing 

its relevance and impact in various domains.  

The enhanced ability to handle complex data features not only ensures dependable 

results but also broadens the model's utility and impact across various domains such as 

image classification, object detection, and pattern recognition. This underscores the 

pivotal role of ongoing research and development endeavors in advancing deep learning 

architectures to meet the ever-evolving demands of real-world applications. As 

technology continues to evolve and datasets become increasingly diverse and complex, 

the need for sophisticated deep learning models capable of effectively handling such 

challenges becomes more pronounced. By continuously refining and optimizing deep 

learning architectures like ResNet50V2, researchers can stay at the forefront of 

innovation, driving progress in fields ranging from healthcare and autonomous driving 
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to natural language processing and beyond. This commitment to advancement ensures 

that deep learning continues to push the boundaries of what is possible, enabling 

transformative solutions to some of the most pressing challenges facing society today.  

 

              Figure 3.9: Modified ResNet50V2 Architecture 
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Figure 3.10: Modified ResNet50V2 model summary 

3.3.5     Model Training 

In addition to fine-tuning hyperparameters for accuracy optimization, my efforts to 

enhance the model's performance on tomato detection tasks involved rigorous training 

on a specialized Tomatoes Dataset. Before training commenced, preprocessing steps 

were undertaken to clean the data and eliminate any irrelevant information. 

Subsequently, the dataset was divided into distinct training and testing sets to facilitate 

the evaluation of the model's performance. During the training phase, the model was 

exposed to the training set while employing various techniques such as data 

augmentation and regularization to combat overfitting. These strategies played a pivotal 

role in enhancing the model's ability to generalize to unseen data and achieve superior 

performance in tomato detection tasks. By systematically incorporating these 

methodologies, I ensured that the model was not only effectively trained but also fine-

tuned to its maximum potential in accurately identifying and classifying tomatoes 

across diverse scenarios. This comprehensive and systematic approach underscores our 

commitment to developing a robust and reliable model for tomato detection. By 

meticulously adjusting hyperparameters and employing advanced training techniques, 

I  aimed to optimize the model's performance and bolster its capability to tackle real-

world challenges in agricultural and food processing industries. 
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Two optimizers, Adam and Adamax, were employed to assess their efficacy in training 

the updated model. Adamax, an extension of the Adam optimizer, introduces additional 

functionality to handle sparse gradients more effectively. The objective of this 

comparative analysis was to discern which optimizer yielded superior results for the 

updated model. Through meticulous evaluation of their performance, researchers aimed 

to pinpoint the optimizer that optimized convergence speed, stability, and overall 

efficacy in adjusting the model's parameters. This comparative research furnished 

valuable insights into the relative strengths and limitations of each optimizer, 

facilitating the selection of the optimal optimization strategy to enhance the model's 

performance in tomato detection tasks. By systematically comparing the performance 

of Adam and Adamax, researchers could make informed decisions regarding the choice 

of optimizer, thereby refining the training process to maximize the model's accuracy 

and efficiency. 

The training input size of 224×224 pixels was selected to ensure the model could 

capture adequate details and features from the images. A batch size of 32 was utilized 

to strike a balance between computational efficiency and model convergence during 

training. This configuration enabled efficient processing of data in batches, facilitating 

effective parameter updates while minimizing computational overhead. These 

considerations are crucial for achieving high-performance results while effectively 

managing computational resources in training deep learning models. 

3.3.6      Model Testing 

In the evaluation phase, the model's performance is rigorously tested on tomato imagery 

from the dataset. Initially, a random sample test image is selected, and the model 

generates a prediction based on its learned parameters. These predictions are then 

validated against existing datasets to ensure accuracy and reliability. Subsequently, the 

model's performance is assessed on hypothetical data by computing metrics such as 

accuracy, recall, and F1 score. These metrics provide valuable insights into the model's 

ability to correctly classify tomatoes across various conditions and scenarios. Further 

evaluation is conducted on unseen Kaggle datasets to gauge the model's generalization 

ability and its effectiveness in recognizing tomatoes in diverse photographs. A precision 

vs. recall curve is plotted to assess the accuracy of the categorization process, offering 

a comprehensive view of the model's performance. To refine and improve the model, 
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adjustments to hyperparameters such as learning rate and number of epochs are made. 

The model's performance is continuously monitored, and modifications are 

implemented as necessary based on its confidence levels and overall efficacy. Finally, 

the model's performance is evaluated using assessment metrics such as accuracy or 

precision, providing a comprehensive understanding of its effectiveness in tomato 

detection tasks. Comparative analysis with other models further validates the model's 

efficacy and highlights areas for improvement, ultimately guiding future iterations and 

advancements in deep learning-based image analysis. 

3.4       Summary 

The ResNet50V2, a deep convolutional neural network (CNN), is renowned for its pre-

trained layers that possess a comprehensive understanding of image characteristics such 

as shape, color, and structure. One of the main factors contributing to the ResNet50V2's 

outstanding image analysis performance is its extraordinary depth. This depth enables 

the model to delve deeply into the minute features included in pictures, revealing 

minute differences and nuances that could otherwise go missed. Consequently, the 

model displays an increased susceptibility to the many attributes seen in various kinds 

of images and environments. From a practical standpoint, this depth means that images 

of any complexity or diversity can be uniquely analyzed to extract useful features. The 

amazing precision with which the ResNet50V2 captures the core of visual input is 

demonstrated in its ability to distinguish fine textures, subtle color gradients, and 

complicated patterns. When working with different datasets that include a wide range 

of image types—from natural scenes to industrial surroundings, and everything in 

between—this functionality is especially helpful. Furthermore, because of its depth, the 

model can learn hierarchical feature representations, in which more complex ideas are 

constructed from simpler primitives. This hierarchical method improves the model's 

resilience and adaptability while also improving its comprehension of images. The 

ResNet50V2 gains proficiency in processing a wide range of picture data by learning 

to identify both simple and complex visual components. This ensures dependable 

performance in a variety of real-world applications. Fundamentally, the ResNet50V2's 

depth is a key component in its capacity to efficiently traverse the complex and varied 

terrain of visual data, which makes it an excellent tool for image analysis jobs in 

domains like computer vision, medical imaging, and more. Thanks to its extensive 
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training on a vast repository of images, the ResNet50V2 demonstrates remarkable 

adaptability and generalization capabilities when presented with new datasets. 

Moreover, it exhibits robustness and versatility in effectively managing a wide range 

of image features, highlighting its prowess in complex image analysis tasks. 

3.5   Methodology (For Testing) 

For the sake of testing, this is our operational procedure. 

Working Flowchart  for Testing  

3.5.1    Initial Data Gathering 

 Start by collecting primary data from relevant sources. Ensure the collected data covers 

the necessary aspects of your project and is of good quality. Organize the data in a 

structured format for further analysis. 

3.5.2    Data Preparation 

Clean and preprocess the collected data by addressing any missing values, outliers, or 

inconsistencies. Standardize or normalize the data to ensure consistency across different 

features. Convert categorical data into numerical formats if required. Split the 

preprocessed data into testing sets for model development and evaluation. 

3.5.3    Creation of Testing Set 

Allocate a portion of the preprocessed data specifically for testing purposes. 
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This segregated dataset will be used to assess the model's performance independently. 

3.5.4    Model Evaluation 

Choose an appropriate machine learning algorithm based on your problem's nature and 

data characteristics. Train the selected model using the training dataset. Fine-tune 

model parameters to optimize its performance. Evaluate the model's effectiveness using 

various metrics such as accuracy, precision, recall, or mean squared error. Utilize 

techniques like cross-validation to validate the model's generalization capabilities. 

3.5.5    Analysis of Expected Results 

Analyze the performance of the trained model and derive insights from the obtained 

results. Identify areas for potential enhancement based on the model's performance 

metrics. Adjust the model architecture or data preprocessing methods as needed. Iterate 

through the process as required until the desired level of performance is achieved. 

Anticipate deploying the trained model for making predictions on new, unseen data. 
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CHAPTER 4 

Results and Discussion 

4.1       Introduction 

The full experimental assessment of the model being offered is based on tomato and its 

category Prediction for diverse images monitoring using modified model described in 

this chapter. 

4.2       Performance parameters 

A numerical declaration of the representational work and its outcomes might serve as a 

performance measure. Measures of performance are sponsored data that show clearly 

if representation or action is accomplishing its objectives and whether policy or 

organizational goals are being promoted. I used an assessment matrix consisting of 

precision, recall, F1-score, true negative rate, and false-positive rate accuracy to 

determine how well my proposed model performed. In classification evaluation, 

precision and recall are important measures that evaluate how well a model identifies 

affirmative class instances. Recall assesses the fraction of true positives that are 

correctly detected, whereas precision counts the percentage of correctly classified 

positives. Both metrics provide information about how well a model performs in 

classification tasks. The precision of positive predictions is highlighted by measuring 

the percentage of accurately predicted positive cases among all positive instances that 

are labeled as such. Conversely, recall measures the percentage of accurately predicted 

positive occurrences among all true positive instances in the dataset, emphasizing the 

model's capacity to include all positive examples. The tradeoff between precisely 

recognizing positive examples (precision) and thoroughly capturing all positive 

instances (recall) is balanced by these measurements, which offer complementary 

insights into the model's performance. Assessing accuracy and recall facilitates the 

assessment of the model's efficacy in accurately classifying positive events and 

provides guidance for optimization tactics to improve its performance. Recall, 

calculated as the ratio of true positives (TP) to the sum of true positives and false 

negatives (FN), quantifies the model's sensitivity to positive instances.  

Recall = TP / (TP + FN) …………………………………………………………..(4.1) 
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Precision, on the other hand, is computed as the ratio of true positives to the sum of true 

positives and false positives (FP), characterizing  the accuracy of positive  predictions. 

Precision=TP / (TP + FP)………………………………………………………….(4.2) 

The F1-score, representing the weighted average of precision and recall, encapsulates 

both false positives and false negatives in its estimation. Mathematically, the F1-score 

is expressed as 

F1 = 2 * (Recall * Precision) / (Recall + Precision) ………………………...…….(4.3) 

True Negative Rate (TNR), denoting the proportion of samples correctly identified as 

negative among those tested negative, is computed as TNR = TN / (FP + TN). 

Conversely, False Positive Rate (FPR), an accuracy metric applicable to specific 

machine learning models, is calculated as  

F1 = FP / (FP + TN)………………………………………………..……………...(4.4) 

Accuracy, as an overall measure of correctly classified samples, is determined by the 

ratio of the sum of true positives and true negatives to the total number of samples.  

Accuracy = (TP + TN) / (TP + TN + FP + FN)……………...…………………….(4.5) 

 In comparison to the classification matrix, True Positive (TP), False Positive (FP), True 

Negative (TN), and False Negative (FN) represent the counts of properly and 

erroneously categorized cases. These metrics are crucial for evaluating the model's 

performance. True Positive indicates successfully recognized positive instances; False 

Positive indicates negative instances misclassified as positive; True Negative indicates 

correctly identified negative instances; and False Negative implies positive instances 

incorrectly classified as negative. By analyzing these quantities, researchers gain 

insights into the model's accuracy, precision, recall, and other performance metrics, 

allowing for a thorough evaluation of its effectiveness in correctly classifying instances 

and informing potential improvements to improve its predictive capabilities. 

4.3       Experimental Analysis   

The modified CNN architecture, initialized with pre-trained ImageNet weights for 

classification, underwent rigorous evaluation on the Tomato Dataset. This assessment 

aimed to gauge the model's performance in accurately identifying tomatoes, crucial for 
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agricultural applications and optimizing yield. The evaluation process for the modified 

CNN included robust validation set support, where the model's performance was 

thoroughly assessed using classification accuracy metrics and a confusion matrix. This 

comprehensive analysis enabled a detailed understanding of the model's ability to 

accurately classify tomatoes and provided insights into potential areas for improvement, 

ensuring its effectiveness for agricultural applications and yield optimization.  The 

evaluation formed the foundation for comparing and analyzing the results against 

architectures presented in existing literature, indicating a systematic approach to 

benchmarking the performance of the proposed methodology against established 

methods documented in prior research.  

TABLE4.1: THE HYPER PARAMETER AND PARAMETER FOR OUR MODEL 

In the  experimental analysis, two optimization techniques, Adam and Adamax, were 

employed with a shared learning rate of 0.001 and a consistent batch  size of 32. The 

model's performance was evaluated using both optimizers, with Adamax serving as an 

alternative. Notably, both optimization strategies exhibited improved accuracy after 25 

epochs of training. This suggests that the model benefited from the optimization 

techniques implemented, regardless of the specific algorithm utilized. The choice to 

include  Adamax as an alternative optimizer indicates a thorough exploration of 

optimization methods to identify the most effective strategy for the given task. The 

consistent learning rate and batch size across experiments ensure a fair comparison 

between optimization techniques. The observed enhancement in accuracy  ensure 

underscores the effectiveness of the optimization process in refining the model's 

performance, contributing valuable insights into the impact of optimization algorithms 

on the overall efficacy of the deep learning model. All experiments employed 

Hyper parameter Parameter value 

Number of Epoch 25 

Batch Size 32 

Optimizer Adam,Adamx 

Learning rate 0.001 

Objective function Sparse Categorical Crossentropy 

Hidden layer ReLu 

Output layer Softmax 
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optimizers with adaptive learning rates and utilized the sparse cross-entropy function 

as the loss as function. This approach ensures efficient optimization by adjusting 

learning rates dynamically. The sparse cross-entropy loss function is suitable for 

scenarios with sparse target labels, making it ideal for classification tasks with many 

classes. The meticulous optimization and evaluation process are essential for refining 

the performance of the convolutional neural network (CNN) model to effectively detect 

tomatoes in the provided dataset. Through rigorous experimentation with various 

parameters, such as optimizers with adaptive learning rates and the sparse cross-entropy 

loss function, the model's accuracy and generalization capabilities can be enhanced. 

The Convolutional Neural Network (CNN) model is refined iteratively until it achieves 

optimal performance in precisely identifying tomatoes, which is important for 

agricultural applications and yield optimization. These iterative improvements entail 

ongoing modifications and improvements to the training protocols, data preprocessing 

methods, and model architecture. Through iteratively fine-tuning the model parameters 

and optimizing its performance measures, the CNN learns to accurately detect tomatoes 

in farming environments. To maximize crop yields, farmers must be able to manage 

their produce effectively and make well-informed decisions. This leads to increased 

agricultural production and profitability.  

4.3.1    Performance Analysis of Adam optimizer 

By looking at the Figure 4.1 training plot, I  can observe that the validation loss tracks 

its training loss, suggesting that the dataset itself does have less overfitting: 

Figure 4.1: Accuracy and Loss curve in Adam Optimizer in 25 epoch 
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Figur4.2: Confusion matrix of Adam Optimizer for our model 

 

Figure 4.3: Classification Report of Adam Optimizer for our model 

As the number of epochs rose, it is clear from the Figure 4.3 confusion matrix and 

Figure 4.6 classification report that the precision, f1-score, recall, support, and accuracy 

all increased. On my 3345 data for four classes, I also employed 25 epochs of the Adam 
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optimizer in this respect and achieved 95.36% testing accuracy. Adam performed 

marginally better when dealing with my model, which has a learning rate of 0.001. 

4.3.2    Performance Analysis of Adamax optimizer 

This Following figure 4.4 shows how training accuracy rises and training loss declines 

as the frequency of epochs rises. 

Fgure 4.4: Accuracy and Loss curve in Adamax Optimizer in 25 epoch 

Using Adamax optimizer, I  trained for a total of 25 epochs, and my test results showed 

that the training and validation sets had an accuracy of 95.36% and the testing set had 

an accuracy of about 95%. Our model's performance is seen in the following Figure 4.5 

confusion metric and Figure 4.6 classification report. 

Figur4.5: Confusion matrix of Adamax Optimizer for our model 
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 Figure 4.6: Classification Report in Adamax Optimizer in our model 

4.4   Experimental Analysis Existing model in our dataset  

The experimental examination of an existing model inside our dataset included careful 

evaluation and comparison to predetermined performance indicators. The results were 

most likely presented in a structured table format, which allowed for a clear depiction 

of the model's performance across multiple tests and conditions. The rigorous 

evaluation of these results revealed insights into the model's efficacy, strengths, and 

opportunities for improvement. This study most certainly influenced later decisions on 

model refinement, optimization tactics, and prospective enhancements, adding to the 

iterative process of model development and validation within the context of the dataset 

and research objectives.  

Table4.2: THE HYPER PARAMETR AND  PARAMETR FOR EXISTING MODEL 

Hyper parameter  Parameter value  

Number of Epoch  25  

Batch Size  32  

Optimizer  Adam, Adam , Adamx  

Learning rate  0.0001,0.001,0.001  

Objective function  Sparse Categorical Crossentropy  

Hidden layer  ReLu  

Output layer  Softmax  
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According to [96],I trained their model with an adaptive 0.0001 learning rate for Adam. 

Then I demonstrated the both Adam and Adamax optimization, when 0.001 learning 

rate was used, and the batch size was set to 32 with 25 epochs. I did it because our 

model learning rate was 0.001for both of them. The optimization process was 

particularly focused on models utilizing adaptive learning rates with sparse cross-

entropy as the chosen loss function. The use of adaptive learning rates is notable for 

dynamically modifying during training, resulting in optimal convergence for a variety 

of input patterns. This dynamic modification improves the model's ability to respond to 

various complexities in the data, hence increasing training efficiency. Meanwhile, the 

loss function used is sparse cross-entropy, which is geared to scenarios with integer 

target values and meets the study's special needs. Sparse cross-entropy is an effective 

measure of the disparity between predicted and true labels, making it ideal for 

classification jobs with many classes. Together, these strategies add to the model's 

robustness, allowing for effective learning and accurate predictions in settings with a 

variety of data patterns and integer target values. To ascertain their effect on the model's 

performance and training, the study carefully examined the Adam and Adamax 

optimization methods in a number of scenarios. Researchers sought to determine the 

relative effects of different optimization techniques on training stability, convergence 

speed, and overall performance by methodically comparing them. Popular adaptive 

learning rate algorithms Adam and Adamax take different ways to calculate the changes 

to the learning rates. The overarching goal of the investigation was to identify the 

observable benefits and drawbacks associated with each optimization method within 

the context of the scenarios explored, employing thorough testing and assessment. The 

comparative study provided meaningful insights into the most suitable optimization 

strategy to select based on the task parameters and the characteristics of the dataset 

under,scrutiny.  

The central objective of the study was to determine the discernible advantages and 

disadvantages of each optimization approach within the confines of the situations 

considered, utilizing meticulous testing and evaluation. The comparative analysis 

yielded substantial insights into the preferred optimization strategy to pursue, 

contingent upon the specifications of the task and the attributes of the dataset examined. 

The comparative research yielded significant insights into the best optimization strategy 

to choose depending on the task specifications and dataset attributes. 
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4.4.1   Performance Analysis of Adam optimizer in existing model 

This Following figure 4.7 graph shows that as the quantity of epochs grows, loss drops 

and accuracy rises. 

 Figure 4.7: Accuracy & loss curve in Adam Optimizer for existing model 

Figure 4.8: Confusion Matrix of Adam optimizer on existing model 
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Figure 4.9: Classification Report of Adam optimizer on existing model 

4.4.2  Performance Analysis of Adam optimizer in existing model  

This Following figure 4.10 graph shows that as the quantity of epochs grows, loss drops, 

and accuracy rises.  

Figure 4.10: Accuracy & loss curve when Adam Optimizer for existing model with 0.001 learning rate 
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Figure 4.11: Confusion Matrix in Adam optimizer existing model with 0.001 learning  rate 

     Figure 4.12: Classification Report in Adam Optimizer for existing model with 0.001 learning rate 
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4.4.3  Performance Analysis of Adamax optimizer in existing model  

This following figure 4.13 graph shows that as the quantity of epochs grows, loss drops 

and accuracy rises. 

Figure 4.13: Accuracy & loss curve when Adamax Optimizer for existing model with 0.001 learning 

rate 

Figure 4.14: Confusion Matrix of Adamax Optimizer for existing model with 0.001 learning rate 
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Figure 4.15: Classification Report of Adamax Optimizer for existing model with 0.001 learning rate 

4.5       Predicted sample 

Figures 4.13–4.16 show the predicted picture visualizations produced by my model. 

These graphic representations demonstrate the model's ability to reliably identify and 

forecast outcomes for each label. These figures, which visually demonstrate the model's 

performance, provide vital insights into its ability to correctly recognize and categorize 

different classes. Visualizations play a crucial role in aiding researchers and 

stakeholders in understanding the capabilities and limitations of a model, thereby 

enhancing comprehension of its predictions, and facilitating potential modifications or 

optimizations. By providing clear and intuitive representations of the data and the 

model's behavior, visualizations offer insights into how the model processes 

information and makes predictions. This transparency fosters trust in the model's 

capabilities, as stakeholders can directly observe its performance and understand the 

factors influencing its predictions. Furthermore, visualizations enable the identification 

of potential areas for improvement, guiding the development of more accurate and 

reliable models. Overall, visualizations serve as an effective tool for evaluating model 

performance, increasing understanding among stakeholders, and enhancing confidence 

in the model's prediction capabilities. Through visual representations, researchers and 

stakeholders can collaborate more effectively to refine models and ensure their 

suitability for various applications. 
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Figure 4.16: Predicted outcomes for Damaged Class 

Figure 4.17: Predicted outcomes for Old Class 
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Figure 4.18: Predicted outcomes for Ripe Class 

Figure 4.19: Predicted outcomes for Unripe Class 

4.6       Result Analysis of existing model 

This part describes how well my model performed using Adam, Adamax, Each 

optimizer's performance was thoroughly compared to determine its effectiveness. This 
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comparison analysis seeks to determine and comprehend the relative strengths and 

limitations of each optimizer in the context of the given task or model. A comparison 

table visually presents the performance of the model and evaluates the effectiveness of 

each optimizer, simplifying the assessment process based on performance criteria. This 

table likely includes metrics such as accuracy, precision, recall, and F1 score for each 

optimizer, allowing for a comprehensive comparison of their performance across 

various evaluation metrics. The comparison table showcases the performance of the 

two optimizers, Adam and Adamax, within our model. By visually summarizing the 

results in a structured format, stakeholders can easily compare the effectiveness of 

different optimizers and make informed decisions regarding their selection based on the 

desired performance criteria and objectives. In my model  

Table 4.3: COMPARISON  TABLE OF ABOVE TWO OPTIMIZERS IN OUR MODEL: 

 

Optimizer 

 

Learning 

Rate 

 

Epoch 

 

Training 

Accuracy 

 

Training 

Loss 

 

Validation 

Accuracy 

 

Validation 

Loss 

Adam 0.001 25 0.9928 0.0222 0.9536 0.2965 

Adamax 0.001 25 0.9880 0.0700 0.9536 0.3546 

I examined these optimizers using my dataset in an existing model to see how they 

affected accuracy and loss. Where the Adam optimizer was run twice at progressively 

higher learning rates of 0.0001 and 0.001, as well as a study of adamax with a learning 

rate of 0.001. It was evident from the comparison table that Adam and Adamax scored 

90.16%, 90.86%, and 92.16%. 

Table 4.4: COMPARISON  TABLE OF ABOVE THREE OPTIMIZERS 

 

Optimizer 

 

Learning 

Rate 

 

Epoch 

 

Training 

Accuracy 

 

Training 

Loss 

 

Validation 

Accuracy 

 

Validation 

Loss 

Adam 0.0001 25 0.9726 0.0865 0.9042 0.2579 

Adam 0.001 25 0.9870 0.0318 0.9086 0.2552 

Adamax 0.001 25 0.9914 0.0308 0.9216 0.2366 
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 4.7     Comparison ADAM With existence work 

I compared our model with the existing paper [35] with our collected Tomatoes Dataset. 

I examined their model carefully. I also tested both Adam and Adamax optimizers on 

their model with 0.001 learning rate where their learning rate was 0.0001. My proposed 

model gave better accuracy than them, I  used Adam optimizer for comparison. The 

Comparison accuracies in the optimizer- Adam respectively 95.36%, 90.42%, 90.86%.  

Figure 4.20: Comparison of validation accuracies of 3 adam optimizers with our model & their 

proposed system. 

4.8       Discussions 

I made a comparatively wide dataset and built a model, which I  modified from 

ResNet%0V2. I  utilized existing models to test the validity of our model with every 

optimizer employed in this research. The results from which we got the better than their 

model gave on my dataset. With these promising results, I am  confident that my model 

can be applied to other datasets of tomato dataset and, hopefully, will lead to improved 

accuracy and performance. 

4.9       Summary 

In this chapter, I have gone over the dataset and experimental settings, as well as the 

environment I  utilized to apply my  suggested models into practice. In my  experiments, 

ResNet50V2's depth improves picture analysis. Shows robust performance across 

varied datasets. Fine-tuned hyperparameters improve accuracy. Comparative study 

evaluates efficacy and informs further developments. 
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4.10      Performance Analysis of Adam optimizer in our model  

This Following figure 4.21 graph shows that as the quantity of epochs grows, loss drops, 

and accuracy rises.  

Figure 4.21: Accuracy and Loss curve in Adam Optimizer in 25 epoch

 

Figure 4.22: Confusion matrix of Adam Optimizer for our model 

A confusion matrix is a tool used to visualize the performance of a classification model, 

where the model's predictions are compared against the actual labels. From the 

information provided, it appears that as the number of epochs increased, the model's 

performance improved, as evidenced by the confusion matrix (Figure 4.22) showing 

better results. The Adam optimizer, a popular optimization algorithm commonly used 

in training neural networks, contributed to achieving a testing accuracy of 68.00%. 

complexity of the task and the quality of the dataset. 
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4.11    Result Analysis of model 

Adam performed marginally better when dealing with my model, which has a learning 

rate of 0.001. 

Table 4.5: COMPARISON  TABLE OF ABOVE ONE OPTIMIZERS IN OUR MODEL 

4.12     Predicted Sample  

Examine an image of tomatoes.ResNet50V2 predicts with 68% accuracy that the image 

contains tomatoes. Here’s an illustration of a predicted sample. 

 

Figure 4.23: Present a visual representation demonstrating the examination of predicted tomato images. 

Optimizer Learning 

Rate 

Epoch Validation  

Accuracy 

Secondary  

Validation 

Loss 

Secondary 

Validation  

Accuracy  

Primary  

Validation 

Loss 

Primary 

Adam 0.001 25 0.9536 0.2965 0.6835 0.3165 
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4.13      Primary Data Outcomes 

Firstly, I  collected primary data(raw data) for testing purpose. My  model was able to 

predict the primary data. I  separated into four classes ripe, unripe, damage, old. I  

collected 49 photos, and our accuracy is 68%.Due to time constraints, I  couldn't gather 

enough old data, impacting accuracy. I  plan to address this by working with larger 

datasets in the future. To compensate for the lack of data, we supplemented with data 

from Kaggle to complete the thesis. 
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CAPTER 5 

Conclusion and Future Works 

5.1      Conclusion 

In this paper we have proposed a new modified CNN model ResNet50V2 and collected 

images for tomato condition detection. When tomato images were used to predict 

tomato quality like Damaged, old, ripe and unripe, the findings were better and 

accurate. I  have gathered image data from google images and different organization 

dataset images. Overall, the research reveals that suggested CNN model could be 

employed for disaster detection and it can predict disasters from images. 

5.2       Contribution of this Thesis 

The researcher introduced a fresh dataset in this thesis, making major contributions to 

the field of tomato detection. This dataset is the outcome of combining existing datasets 

to provide a more diversified and thorough training set for the neural network. The goal 

of this project is to improve the effectiveness of tomato identification systems by giving 

a more diverse and representative set of samples for the model to learn from. Secondly, 

the ResNet50V2 model is modified to specifically tackle challenges related to tomato 

characteristics. The specific changes made to the ResNet50V2 model greatly improve 

its accuracy in tomato detection in a variety of scenarios. The effect of adding a 

flattening layer to the neural network on processing one-dimensional arrays is 

particularly noteworthy. This well-thought-out inclusion simplifies data representation, 

enabling learning and optimization that is more efficient. Through particular 

architecture adaptation to tomato properties, the modified model demonstrates its 

effectiveness in enhancing tomato detection performance in a variety of settings. 

The combined effect of these contributions yields a more robust and adaptable tomato 

detection method. The improved model can adjust to changing tomato characteristics 

and environmental conditions, making it useful for precision agriculture applications. 

The implications extend beyond yield optimization, where precise and flexible tomato 

detection might be critical for successful crop management. Overall, this study bridges 

the gap between dataset diversity and model modification by providing practical 

answers to real-world agricultural difficulties. 
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5.3       Future works 

Some areas of the current research can be examined and improved. The following 

recommendations are made based on the literature reviews and studies undertaken in 

this thesis.  

This thesis opens avenues for future research, including the exploration of transfer 

learning techniques and the integration of real-time data augmentation strategies to 

further improve model generalization. Additionally, collaborative efforts to create and 

share annotated datasets specific to tomato detection can contribute to advancing the 

field. In the future, a new classifier with a different optimizer can be introduced for 

improved accuracy and outcomes. In addition, video recognition will be the primary 

focus of future study. Besides detecting natural disasters will do image segmentation.  

In conclusion, this thesis presents a holistic approach to advancing tomato detection 

through dataset fusion and modifications to the ResNet50V2 model. The results 

showcase the potential for enhanced accuracy in tomato detection, contributing to the 

broader goal of optimizing agricultural practices through technology-driven solutions.
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APPENDIX  

Methodology (For Testing) 

For the sake of testing, this is my operational procedure. 

Working Flowchart  for Testing  

Initial Data Gathering 

 Start by collecting primary data from relevant sources. Ensure the collected data covers 

the necessary aspects of your project and is of good quality. Organize the data in a 

structured format for further analysis. 

Data Preparation 

Clean and preprocess the collected data by addressing any missing values, outliers, or 

inconsistencies. Standardize or normalize the data to ensure consistency across different 

features. Convert categorical data into numerical formats if required. Split the 

preprocessed data into testing sets for model development and evaluation. 

Creation of Testing Set 

Allocate a portion of the preprocessed data specifically for testing purposes.This 

segregated dataset will be used to assess the model's performance independently. 

Model Evaluation 

Choose an appropriate machine learning algorithm based on your problem's nature and 

data characteristics. Train the selected model using the training dataset. Fine-tune 

model parameters to optimize its performance. Evaluate the model's effectiveness using 

various metrics such as accuracy, precision, recall, or mean squared error. Utilize 
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techniques like cross-validation to validate the model's generalization capabilities. 

Analysis of Expected Results 

Analyze the performance of the trained model and derive insights from the obtained 

results. Identify areas for potential enhancement based on the model's performance 

metrics. Adjust the model architecture or data preprocessing methods as needed. Iterate 

through the process as required until the desired level of performance is achieved. 

Anticipate deploying the trained model for making predictions on new, unseen data. 

Performance Analysis of Adam optimizer in our model  

This Following graph shows that as the quantity of epochs grows, loss drops, and 

accuracy rises.  

Figure: Accuracy and Loss curve in Adam Optimizer in 25 epoch

 

Figure: Confusion matrix of Adam Optimizer for our model 

As the number of epochs rose, it is clear from the Figure confusion matrix. Adam 

optimized in this respect and achieved 68.00% testing accuracy. 
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Result Analysis of model 

Adam performed marginally better when dealing with my model, which has a learning 

rate of 0.001. 

Table : COMPARISON  TABLE OF ABOVE ONE OPTIMIZERS IN OUR MODEL: 

Predicted Sample 

Examine an image of tomatoes.ResNet50V2 predicts with 68% accuracy that the image 

contains tomatoes. Here’s an illustration of a predicted sample. 

 

Figure : Present a visual representation demonstrating the examination of predicted tomato images. 

Optimizer Learning 

Rate 

Epoch Validation  

Accuracy 

Secondary  

Validation 

Loss 

Secondary 

Validation  

Accuracy  

Primary  

Validation 

Loss 

Primary 

Adam 0.001 25 0.9536 0.2965 0.6835 0.3165 
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Primary Data Outcomes 

Firstly, I  collected primary data(raw data) for testing purposes. My  model was able to 

predict the primary data. I  separated into four classes ripe, unripe, damaged, old. I  

collected 49 photos, and my  accuracy is 68%.Due to time constraints, I  couldn't gather 

enough old data, impacting accuracy. I  plan to address this by working with larger 

datasets in the future. To compensate for the lack of data, I  supplemented with data 

from Kaggle to complete the thesis. 
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The codes that I  used in my  experiment is given down below: 

Primary Model Codes  

from google.colab import drive 

drive.mount('/content/drive') 

 

train_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    " /content/drive/MyDrive/ tomatoes_dataset/train", 

    seed=123, 

    shuffle=True, 

    image_size=(224,224), 

    batch_size=32 

) 

classes_tn = train_dir.class_names 

classes_tn 

 

val_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "tomatoes_dataset/val", 

    seed=123, 

    shuffle=False, 

    image_size=(224,224), 

    batch_size=32 

) 

classes_vl = val_dir.class_names 

classes_vl 

 

test_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "tomatoes_dataset/test", 

    seed=123, 

    shuffle=False, 

    image_size=(224,224), 

    batch_size=32 

) 

image_class = test_dir.class_names 

image_class 

# Scaling Data 

train_dir=train_dir.map(lambda x,y:(x/255,y)) 

val_dir=val_dir.map(lambda x,y:(x/255,y)) 

test_dir=test_dir.map(lambda x,y:(x/255,y)) 

 

scaled_iterator=train_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

scaled_iterator=val_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

scaled_iterator=test_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 
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AUTOTUNE = tf.data.experimental.AUTOTUNE 

train_dir = train_dir.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) 

val_dir = val_dir.cache().prefetch(buffer_size=AUTOTUNE) 

test_dir = test_dir.cache().prefetch(buffer_size=AUTOTUNE) 

 

#Augmentation 

 

aug = tf.keras.Sequential([ 

  layers.RandomFlip("horizontal_and_vertical"), 

  layers.RandomRotation(0.2), 

  layers.RandomZoom(0.2) 

 ]) 

 

train_dir= train_dir.map( 

    lambda x, y: (aug(x, training=True), y) 

).prefetch(buffer_size=tf.data.AUTOTUNE) 

 

import tensorflow as tf 

tf.get_logger().setLevel('ERROR') 

import matplotlib.pyplot as plt 

 

import os 

import cv2 

import imghdr 

import time 

import numpy as np 

import seaborn as sns 

 

from tensorflow import keras 

from tensorflow.keras.preprocessing import  image_dataset_from_directory 

from tensorflow.keras import callbacks 

from tensorflow.keras import models, layers 

from tensorflow.keras.models import Sequential,Model 

 

from tensorflow.keras.applications import MobileNetV2,ResNet50V2,ResNet50 

from tensorflow.keras.layers import 

experimental,MaxPooling2D,GlobalAveragePooling2D, \ 

                                    Conv2D,BatchNormalization,Dense,Dropout,Flatten 

 

from sklearn.metrics import  accuracy_score, recall_score, precision_score, \ 

                                                f1_score,confusion_matrix,classification_report 

 

ADAM 

 

# compile the model 

firstR_model.compile( 

  optimizer=keras.optimizers.Adam(learning_rate=1e-3,decay= 1e-3), 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 
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  metrics=['accuracy'] 

) 

 

checkpoint_path = 'Model/check_am/weights-improvement-{epoch:02d}-

{val_accuracy:.2f}.hdf5' 

checkpoint_dir = os.path.dirname(checkpoint_path) 

cp_callback = callbacks.ModelCheckpoint(checkpoint_path, 

                                                monitor='val_accuracy', 

                                                verbose=1, 

                                                save_best_only=True, 

                                                mode='max', 

                                                save_freq='epoch') 

early_stoping=callbacks. 

EarlyStopping(monitor="val_loss", 

                                     patience=2, 

                                     verbose=1 

                                     ) 

 

#fitting model 

 

start = time.time() 

history = firstR_model.fit( 

    train_dir, 

    batch_size=32, 

    validation_data=val_dir, 

    verbose=1, 

    epochs=25, 

    callbacks = [cp_callback] 

) 

print("Total time: ", 

      time.time() - start, 

      "seconds") 

 

scores = firstR_model.evaluate(val_dir) 

scores 

HISTORY  

history.params 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

 

EPOCHS=range(1, len(acc) + 1) 

 

plt.figure(figsize=(10,6)) 

plt.subplot(1, 2, 1) 

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta') 
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plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy',fontsize=15) 

 

plt.subplot(1, 2, 2) 

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta') 

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss',fontsize=15) 

plt.show() 

 

def actual_predicted_labels(val_dir): 

 

            actual = [labels for _, labels in val_dir.unbatch()] 

            prediction = firstR_model.predict(val_dir) 

 

            actual = tf.stack(actual, axis=0) 

            predicted = tf.concat(prediction, axis=0) 

            predicted = tf.argmax(prediction, axis=1) 

 

            return actual, predicted 

 

def confusion_matrix(actual, predicted,labels=classes_tn): 

    cm = tf.math.confusion_matrix(actual, predicted) 

    ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g') 

    sns.set(rc={'figure.figsize':(8, 6)}) 

    sns.set(font_scale=1.2) 

    plt.xticks(rotation=90) 

    plt.yticks(rotation=0) 

    ax.xaxis.set_ticklabels(labels) 

    ax.yaxis.set_ticklabels(labels) 

    ax.set_title('Confusion matrix of Tomato Detection') 

    ax.set_xlabel('Predicted Action') 

    ax.set_ylabel('Actual Action') 

 

actual, predicted = actual_predicted_labels(val_dir) 

print(confusion_matrix(actual, predicted, classes_tn)) 

print(classification_report(actual, predicted, target_names=classes_tn)) 

 

ADAMAX 

# compile the model 

firstR_model.compile( 

  optimizer=keras.optimizers.Adam(learning_rate=1e-3,decay= 1e-3), 

 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 

  metrics=['accuracy'] 



 

 85 

 

) 

checkpoint_path = 'Model/check_am/weights-improvement-{epoch:02d}-

{val_accuracy:.2f}.hdf5' 

checkpoint_dir = os.path.dirname(checkpoint_path) 

cp_callback = callbacks.ModelCheckpoint(checkpoint_path, 

                                                monitor='val_accuracy', 

                                                verbose=1, 

                                                save_best_only=True, 

                                                mode='max', 

                                                save_freq='epoch') 

early_stoping=callbacks.EarlyStopping(monitor="val_loss", 

                                     patience=2, 

                                     verbose=1 

                                     ) 

 

#fitting model 

 

start = time.time() 

history = firstR_model.fit( 

    train_dir, 

    batch_size=32, 

    validation_data=val_dir, 

    verbose=1, 

    epochs=25, 

    callbacks = [cp_callback] 

print("Total time: ", 

      time.time() - start, 

      "seconds") 

 

scores = firstR_model.evaluate(val_dir) 

 

 

HISTORY 

history.params 
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acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

 

EPOCHS=range(1, len(acc) + 1) 

 

plt.figure(figsize=(10,6)) 

plt.subplot(1, 2, 1) 

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta') 

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy',fontsize=15) 

 

 

plt.subplot(1, 2, 2) 

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta') 

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss',fontsize=15) 

plt.show() 

 

def actual_predicted_labels(val_dir): 

actual = [labels for _, labels in val_dir.unbatch()] 

            prediction = firstR_model.predict(val_dir) 

            actual = tf.stack(actual, axis=0) 

            predicted = tf.concat(prediction, axis=0) 

            predicted = tf.argmax(prediction, axis=1) 

return actual, predicted  

 

def confusion_matrix(actual, predicted,labels=classes_tn): 

    cm = tf.math.confusion_matrix(actual, predicted) 

    ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g') 
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    sns.set(rc={'figure.figsize':(8, 6)}) 

    sns.set(font_scale=1.2) 

    plt.xticks(rotation=90) 

    plt.yticks(rotation=0) 

    ax.xaxis.set_ticklabels(labels) 

    ax.yaxis.set_ticklabels(labels) 

    ax.set_title('Confusion matrix of Tomato Detection') 

    ax.set_xlabel('Predicted Action') 

    ax.set_ylabel('Actual Action') 

 

actual, predicted = actual_predicted_labels(val_dir) 

print(confusion_matrix(actual, predicted, classes_tn)) 

print(classification_report(actual, predicted, target_names=classes_tn)) 

 

Existing Model 

from google.colab import drive 

drive.mount('/content/drive') 

 

import tensorflow as tf 

tf.get_logger().setLevel('ERROR') 

import matplotlib.pyplot as plt 

 

import os 

import cv2 

import imghdr 

import time 

import numpy as np 

import seaborn as sns 

 

from tensorflow import keras 

from tensorflow.keras import callbacks 

from tensorflow.keras import models, layers 

from tensorflow.keras.models import Sequential,Model 

 

from tensorflow.keras.applications import MobileNetV2,ResNet50V2,ResNet50 

from tensorflow.keras.layers import experimental,MaxPooling2D,GlobalAveragePooling2D, \ 

                                    Conv2D,BatchNormalization,Dense,Dropout,Flatten 

 

from sklearn.metrics import  accuracy_score, recall_score, precision_score, \ 

                            f1_score,confusion_matrix,classification_report 
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train_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "tomatoes_dataset/train", 

    seed=123, 

    shuffle=True, 

    image_size=(224,224), 

    batch_size=32 

) 

classes_tn = train_dir.class_names 

classes_tn 

 

val_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "tomatoes_dataset/val", 

    seed=123, 

    shuffle=False, 

    image_size=(224,224), 

    batch_size=32 

) 

classes_vl = val_dir.class_names 

classes_vl 

 

test_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "tomatoes_dataset/test", 

    seed=123, 

    shuffle=False, 

    image_size=(224,224), 

    batch_size=32 

) 

image_class = test_dir.class_names 

image_class 

 

train_dir=train_dir.map(lambda x,y:(x/255,y)) 

val_dir=val_dir.map(lambda x,y:(x/255,y)) 

test_dir=test_dir.map(lambda x,y:(x/255,y)) 

 

scaled_iterator=train_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

scaled_iterator=val_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

scaled_iterator=test_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

 

AUTOTUNE = tf.data.experimental.AUTOTUNE 

train_dir = train_dir.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) 

val_dir = val_dir.cache().prefetch(buffer_size=AUTOTUNE) 

test_dir = test_dir.cache().prefetch(buffer_size=AUTOTUNE) 

 

aug = tf.keras.Sequential([ 
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  layers.RandomFlip("horizontal_and_vertical"), 

  layers.RandomRotation(0.2), 

  layers.RandomZoom(0.2) 

 ]) 

 

train_dir= train_dir.map( 

    lambda x, y: (aug(x, training=True), y) 

).prefetch(buffer_size=tf.data.AUTOTUNE) 

 

plt.figure(figsize=(10, 7)) 

for images, _ in train_dir.take(3): 

    for i in range(6): 

        augmented_images = aug(images) 

        ax = plt.subplot(2, 3, i + 1) 

        plt.imshow(augmented_images[0].numpy()) 

IMG_SIZE=[224,224] 

baseR_model = ResNet50V2(input_shape=IMG_SIZE + [3], 

              weights='imagenet', 

              include_top=False) 

 

baseR_model.summary() 

 

tf.keras.utils.plot_model( 

    baseR_model, to_file='baseR_model.png',show_shapes=True,show_layer_names=True 

) 

# compile the model 

firstR_model.compile( 

  optimizer=keras.optimizers.Adam(learning_rate=1e-4,decay= 1e-3), 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 

  metrics=['accuracy'] 

) 

 

checkpoint_path = 'Model/check_A/weights-improvement-{epoch:02d}-{val_accuracy:.2f}.hdf5' 

checkpoint_dir = os.path.dirname(checkpoint_path) 

cp_callback = callbacks.ModelCheckpoint(checkpoint_path, 

                                                monitor='val_accuracy', 

                                                verbose=1, 

                                                save_best_only=True, 

                                                mode='max', 

                                                save_freq='epoch') 

early_stoping=callbacks.EarlyStopping(monitor="val_loss", 

                                     patience=2, 

                                     verbose=1 

                                     ) 

 

#fitting model 

 

start = time.time() 
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history = firstR_model.fit( 

    train_dir, 

    batch_size=32, 

    validation_data=val_dir, 

    verbose=1, 

    epochs=25, 

    callbacks = [cp_callback] 

) 

print("Total time: ", 

      time.time() - start, 

      "seconds") 

 

scores = firstR_model.evaluate(val_dir) 

scores 

 

history 

history.params 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

 

EPOCHS=range(1, len(acc) + 1) 

 

plt.figure(figsize=(10,6)) 

plt.subplot(1, 2, 1) 

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta') 

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy',fontsize=15) 

 

plt.subplot(1, 2, 2) 

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta') 

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss',fontsize=15) 

plt.show() 

 

def actual_predicted_labels(val_dir): 

 

            actual = [labels for _, labels in val_dir.unbatch()] 

            prediction = firstR_model.predict(val_dir) 

 

            actual = tf.stack(actual, axis=0) 

            predicted = tf.concat(prediction, axis=0) 

            predicted = tf.argmax(prediction, axis=1) 
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            return actual, predicted 

 

def confusion_matrix(actual, predicted,labels=classes_tn): 

    cm = tf.math.confusion_matrix(actual, predicted) 

    ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g') 

    sns.set(rc={'figure.figsize':(8, 6)}) 

    sns.set(font_scale=1.2) 

    plt.xticks(rotation=90) 

    plt.yticks(rotation=0) 

    ax.xaxis.set_ticklabels(labels) 

    ax.yaxis.set_ticklabels(labels) 

    ax.set_title('Confusion matrix of Tomato Detection') 

    ax.set_xlabel('Predicted Action') 

    ax.set_ylabel('Actual Action') 

 

actual, predicted = actual_predicted_labels(val_dir) 

print(confusion_matrix(actual, predicted, classes_tn)) 

print(classification_report(actual, predicted, target_names=classes_tn)) 

 

ADAMAX 
 

# compile the model 

firstR_model.compile( 

  optimizer=keras.optimizers.Adam(learning_rate=1e-3,decay= 1e-3), 

  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False), 

  metrics=['accuracy'] 

) 

 

checkpoint_path = 'Model/check_AdmxB/weights-improvement-{epoch:02d}-

{val_accuracy:.2f}.hdf5' 

checkpoint_dir = os.path.dirname(checkpoint_path) 

cp_callback = callbacks.ModelCheckpoint(checkpoint_path, 

                                                monitor='val_accuracy', 

                                                verbose=1, 

                                                save_best_only=True, 

                                                mode='max', 

                                                save_freq='epoch') 

early_stoping=callbacks.EarlyStopping(monitor="val_loss", 

                                     patience=2, 

                                     verbose=1 

                                     ) 

#fitting model 

 

start = time.time() 

history = firstR_model.fit( 

    train_dir, 

    batch_size=32, 

    validation_data=val_dir, 
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    verbose=1, 

    epochs=25, 

    callbacks = [cp_callback] 

) 

print("Total time: ", 

      time.time() - start, 

      "seconds") 

 

scores = firstR_model.evaluate(val_dir) 

scores 

 

history 

history.params 

acc = history.history['accuracy'] 

val_acc = history.history['val_accuracy'] 

 

loss = history.history['loss'] 

val_loss = history.history['val_loss'] 

 

EPOCHS=range(1, len(acc) + 1) 

 

plt.figure(figsize=(10,6)) 

plt.subplot(1, 2, 1) 

plt.plot(EPOCHS,acc, label='Training Accuracy',color='darkmagenta') 

plt.plot(EPOCHS, val_acc, label='Validation Accuracy',color='cadetblue') 

plt.legend(loc='lower right') 

plt.title('Training and Validation Accuracy',fontsize=15) 

 

plt.subplot(1, 2, 2) 

plt.plot(EPOCHS,loss, label='Training Loss',color='darkmagenta') 

plt.plot(EPOCHS, val_loss, label='Validation Loss',color='cadetblue') 

plt.legend(loc='upper right') 

plt.title('Training and Validation Loss',fontsize=15) 

plt.show() 

 

def actual_predicted_labels(val_dir): 

 

            actual = [labels for _, labels in val_dir.unbatch()] 

            prediction = firstR_model.predict(val_dir) 

 

            actual = tf.stack(actual, axis=0) 

            predicted = tf.concat(prediction, axis=0) 

            predicted = tf.argmax(prediction, axis=1 

            return actual, predicted 

 

def confusion_matrix(actual, predicted,labels=classes_tn): 

    cm = tf.math.confusion_matrix(actual, predicted) 

    ax = sns.heatmap(cm, annot=True,cmap="bone",cbar=True, fmt='g') 
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    sns.set(rc={'figure.figsize':(8, 6)}) 

    sns.set(font_scale=1.2) 

    plt.xticks(rotation=90) 

    plt.yticks(rotation=0) 

    ax.xaxis.set_ticklabels(labels) 

    ax.yaxis.set_ticklabels(labels) 

    ax.set_title('Confusion matrix of Tomato Detection') 

    ax.set_xlabel('Predicted Action') 

    ax.set_ylabel('Actual Action') 

 

actual, predicted = actual_predicted_labels(val_dir) 

print(confusion_matrix(actual, predicted, classes_tn)) 

print(classification_report(actual, predicted, target_names=classes_tn)) 

 

 

DEMO CODE  

 

from google.colab import drive 

drive.mount('/content/drive') 

 

import tensorflow as tf 

tf.get_logger().setLevel('ERROR') 

import matplotlib.pyplot as plt 

 

import os 

import cv2 

import imghdr 

import time 

import numpy as np 

import seaborn as sns 

 

from tensorflow import keras 

from tensorflow.keras import callbacks 

from tensorflow.keras import models, layers 

from tensorflow.keras.models import Sequential,Model 

 

from tensorflow.keras.applications import MobileNetV2,ResNet50V2,ResNet50 

from tensorflow.keras.layers import experimental,MaxPooling2D,GlobalAveragePooling2D, \ 

                                    Conv2D,BatchNormalization,Dense,Dropout,Flatten 

 

from sklearn.metrics import  accuracy_score, recall_score, precision_score, \ 

                            f1_score,confusion_matrix,classification_report 

#directory 

 

train_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "/content/drive/MyDrive/Colab Notebooks /tomatoes_datasets/train", 

    seed=123, 

    shuffle=True, 



 

 94 

 

    image_size=(224,224), 

    batch_size=32 

) 

classes_tn = train_dir.class_names 

classes_tn 

 

val_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "/content/drive/MyDrive/Colab Notebooks/Ifat_bappy/tomatoes_datasets/val", 

    seed=123, 

    shuffle=False, 

    image_size=(224,224), 

    batch_size=32 

) 

classes_vl = val_dir.class_names 

classes_vl 

 

test_dir = tf.keras.preprocessing.image_dataset_from_directory( 

    "/content/drive/MyDrive/Colab Notebooks/Ifat_bappy/tomatoes_datasets/sample_test", 

    seed=123, 

    shuffle=False, 

    image_size=(224,224), 

    batch_size=64 

) 

image_class = test_dir.class_names 

image_class 

 

# Scaling Data 

train_dir=train_dir.map(lambda x,y:(x/255,y)) 

val_dir=val_dir.map(lambda x,y:(x/255,y)) 

test_dir=test_dir.map(lambda x,y:(x/255,y)) 

 

scaled_iterator=train_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

scaled_iterator=val_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

scaled_iterator=test_dir.as_numpy_iterator() 

label_batch=scaled_iterator.next() 

 

AUTOTUNE = tf.data.experimental.AUTOTUNE 

train_dir = train_dir.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) 

val_dir = val_dir.cache().prefetch(buffer_size=AUTOTUNE) 

test_dir = test_dir.cache().prefetch(buffer_size=AUTOTUNE) 

 

#Augmentation 

 

aug = tf.keras.Sequential([ 

  layers.RandomFlip("horizontal_and_vertical"), 

  layers.RandomRotation(0.2), 
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  layers.RandomZoom(0.2) 

 ]) 

 

train_dir= train_dir.map( 

    lambda x, y: (aug(x, training=True), y) 

).prefetch(buffer_size=tf.data.AUTOTUNE) 

 

plt.figure(figsize=(10, 7)) 

for images, _ in train_dir.take(3): 

    for i in range(6): 

        augmented_images = aug(images) 

        ax = plt.subplot(2, 3, i + 1) 

        plt.imshow(augmented_images[0].numpy()) 

IMG_SIZE=[224,224] 

baseR_model = ResNet50V2(input_shape=IMG_SIZE + [3], 

              weights='imagenet', 

              include_top=False) 

 

baseR_model.summary() 

 

tf.keras.utils.plot_model( 

    baseR_model, to_file='baseR_model.png',show_shapes=True,show_layer_names=True 

) 

AccuracyVector = [] 

plt.figure(figsize=(30, 20)) 

for images, labels in test_dir.take(1): 

    predictions = firstR_model.predict(images) 

    predlabel = [] 

    prdlbl = [] 

 

    for mem in predictions: 

        predlabel.append(image_class[np.argmax(mem)]) 

        prdlbl.append(np.argmax(mem)) 

 

    AccuracyVector = np.array(prdlbl) == labels 

    for i in range(30): 

        ax = plt.subplot(3, 10, i + 1) 

        plt.imshow(images[i].numpy()) 

        plt.title('Pred: '+ predlabel[i]+ '\n'+ ' actual:'+image_class[labels[i]] ) 

        plt.axis('off') 

AccuracyVector = [] 

plt.figure(figsize=(25, 25)) 

for images, labels in test_dir.take(1): 

    predictions = firstR_model.predict(images) 

    predlabel = [] 

    prdlbl = [] 

 

    for mem in predictions: 
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        predlabel.append(image_class[np.argmax(mem)]) 

        prdlbl.append(np.argmax(mem)) 

 

    AccuracyVector = np.array(prdlbl) == labels 

    for i in range(49): 

        ax = plt.subplot(7, 7, i + 1) 

        plt.imshow(images[i].numpy()) 

        plt.title('Pred: '+ predlabel[i]+ '\n'+ ' actual:'+image_class[labels[i]] ) 

        plt.axis('off') 

        plt.grid(True) 

 

 


