Human Activity Recognition using Depth Body Part Histograms and Hidden Markov Models

dc.contributor.authorUddin, Md. Zia
dc.contributor.authorTorresen, Jim
dc.contributor.authorJabid, Taskeed
dc.date.accessioned2019-01-22T03:41:06Z
dc.date.available2019-01-22T03:41:06Z
dc.date.issued2016-10-28
dc.description.abstractThis paper proposes a novel approach for human activity recognition based on body part histograms and Hidden Markov Models. From a depth video frame, body parts are segmented first using a trained random forest. Then, a histogram for each body part is combined to represent histogram features for a depth image. The depth video activity features are then applied on hidden Markov models for training and recognition. The proposed method was superior when compared with other conventional approaches.en_US
dc.identifier.citationIIUC-ICISET2016-ID-168en_US
dc.identifier.isbn978-1-5090-6121-1
dc.identifier.isbn978-1-5090-6121-8
dc.identifier.urihttp://dspace.iiuc.ac.bd:8080/xmlui/handle/88203/529
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectDepth Imageen_US
dc.subjectHMMen_US
dc.subjectHistogramen_US
dc.titleHuman Activity Recognition using Depth Body Part Histograms and Hidden Markov Modelsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IIUC-ICISET2016-ID-168.pdf
Size:
287.69 KB
Format:
Adobe Portable Document Format
Description:
IIUC-ICISET2016-ID-168